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Introduction 
The ATI Radeon™ HD 2000 series is a major upgrade to AMD’s graphics product line. It is based on a 
new architecture and was built with full hardware support for the Direct3D® 10 API. This guide goes 
through the performance characteristics of this new chip and aims to help developers achieve the best 
possible performance. 
 

What’s new? 

The most significant difference between the ATI Radeon HD 2000 and earlier hardware generations is 
that it adds full support for Microsoft’s Direct3D 10 API. The ATI Radeon HD 2000 is built on a new 
architecture and has many performance enhancements under the hood that changes its performance 
characteristics compared to earlier generations. One important such enhancement is that the shader core 
now is fully unified, meaning that the vertex shader, geometry shader and the pixel shader all share the 
same shader resources. The hardware automatically schedules work onto the shader pipelines to balance 
the workload. This means that if the workload on the pixel shader is light, more computation power will 
be shifted over to the vertex shader and geometry shader and vice versa. 
 
Another important change compared to earlier generations is that the shader core now is scalar based 
whereas previous generations were vector based. The X1000 series could execute one 3-component 
vector and one scalar instruction in parallel in the pixel pipeline meaning that scalar-heavy shaders 
would be able to process at most two scalar instructions per cycle. In the vertex shader it was similar, 
with the difference that it was a 4-component vector plus a scalar. The ATI Radeon HD 2000 series on 
the other hand has 5 scalar units where the fifth unit has extra functionality over the other four. 
 
Other improvements include a wider bus, enhanced video capabilities, on-chip Crossfire support and a 
wide range of performance enhancements across the board. We will discuss some of the important 
changes and their implications for developers in this document. 
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Shaders 

Generic shader optimization 

With a unified architecture many shader optimizations are fundamentally the same between the vertex, 
geometry and pixel shader. Since the same operations in the different shaders run through the same 
hardware you can expect similar performance in all units. This means that for instance vertex texture 
fetch should run at about the same speed as you expect it to run in the pixel shader. 
 

Unified architecture 
Since the shader core is unified all shaders consume shader processing power from the shared pool of 
processing resources. This means that optimizing the code that’s not the main bottleneck may still result 
in a performance increase. On earlier hardware generations one would for instance not care too much 
about the vertex shader in a very pixel shader limited case since the shaders ran on separate hardware 
units. So if the pixel shader was saturated, one could view the vertex processing as being for free since 
adding more work to the vertex shader did not change the performance. With a unified shader 
architecture this is not true anymore. Now it’s the total amount of work that matters instead of the 
amount of work in the heaviest loaded unit. So an unoptimized vertex shader will drain computational 
resources to some degree from the pixel shader even in a pixel shader bound case. This makes it 
important to look at all shaders and not just the most dominant one. 
 

Dynamic branching 
The ATI Radeon HD 2000 hardware has excellent dynamic branching performance for all three shader 
stages. Using dynamic branching you can reduce the workload in e.g. a pixel shader by skipping past 
instructions that don’t need to be executed. In a lighting situation, if the pixel is in shadow you don’t 
need to compute the whole lighting equation but may return zero or the ambient value immediately. 
Same thing if the pixel is beyond the light radius. It can be beneficial to rearrange your code so that you 
can do some large scale culling early in the shader. For instance attenuation is usually cheap to compute, 
so it makes sense to do that first in the shader. Depending on how your shader looks you may sometimes 
see better performance if you stick to a small set of branches instead of several branches shortly after 
each other. Thus it may be faster to multiply the attenuation with the shadow factor and check that value 
against zero, rather than checking attenuation first and then shadow in a separate branch. This varies a 
lot with the situation, so it’s recommended that you try both approaches and see which one comes out 
faster in your application. 
 
One thing to keep in mind though is that branches need to be coherent to achieve top performance. If 
pixels within the same thread take different branches the hardware will have to execute both sides of the 
branch and just select the results for each pixel. So for branches that generally are not coherent you will 
probably see a performance loss compared to code without branching. For the ATI Radeon HD 2000 
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you need a coherency of at least 64 pixels or vertices. Anything that varies in smaller units than that in 
general should not use dynamic branching. For example you may have the following code:  
 

 

 

float diffuse = dot(lightVec, normal); 

if (diffuse > 0.0) 

{ 

    // Compute lighting ... 

} 

 

 

If the normal is an interpolated normal across the surface this branch is fine. But if the normal comes out 
of a high-frequency normal map this code may result in a performance loss. This is because normals 
from a high-requency normal map can typically vary a lot from pixel to pixel. As a result, in most cases 
the hardware will not be able to skip past the code within the if-statement, so there is no performance 
gain to be had, but you incur a small performance hit from doing the actual branch test and possible 
additional register pressure.  
 

Scalar ALUs 
The shader core has 5 scalar units and the most common math operations can execute on all these units. 
However, certain less frequently used operations only run on the fifth unit, which is also known as the 
transcendental unit and is equipped with more capabilities. Operations that only run on the fifth unit is 
integer multiplication and division, bit shifts, reciprocal, division, sqrt, rsqrt, log, exp, pow, sin, cos and 
type conversion. Moderate use of these is OK, but if a shader is dominated by these operations, the other 
scalar units will go idle resulting in much lower throughput.  
 
To maximize the performance you should prefer using instructions that can run on all five units. In some 
cases integer operations can be changed for floating point, which may allow it to run on all units. Note 
that integer additions and subtractions can run on all units though, as well as logical operations such as 
and/or/xor/not. If the data you’re computing is going to be converted, you may be able to defer some 
operations to after the conversion to allow the use of better instructions. One common case is extracting 
packed data. Assume you have an RGBA color packed in a uint. A standard extraction approach might 
look something like this: 
 

 

uint r = (color      ) & 0xFF; 

uint g = (color >>  8) & 0xFF; 

uint b = (color >> 16) & 0xFF; 

uint a = (color >> 32) & 0xFF; 

return float4(r, g, b, a) * (1.0 / 255.0); 
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This compiles down to 8 instruction slots. We have three bit-shifts and four conversions that are 
responsible for this. We can’t easily get rid of the conversions, but the bit-shifts can be changed for 
floating multiplications after the conversion. 
 

 

uint r = color & 0x000000FF; 

uint g = color & 0x0000FF00; 

uint b = color & 0x00FF0000; 

uint a = color & 0xFF000000; 

return float4(r, g, b, a) * (1.0 / (255 * float4(1, 256, 65536, 16777216))); 

 

 

This code compiles down to 6 instructions slots, while also leaving more scalar slots open for the 
compiler to fit other code into. In particular, we now only have 4 instructions (for the type conversions) 
that need to execute on the transcendental unit compared to 7 for the original code. 
 

Write parallel code 
For previous generations the recommendation was to vectorize the code. For this generation the 
recommendation is to write parallel code. Vectorized code is still good, because it’s also parallel; 
however, you may write code that’s not vectorized but still very parallel. Forcing operations into vectors 
may turn out counterproductive on a scalar architecture though. On the other hand, there’s no need to 
break code that’s naturally vectorized into scalars. In general it’s recommended that you keep operations 
in their natural domain. 
 
It’s important to not assume that because there are 5 independent scalar units you will always be able to 
crunch through the math at 5 scalar operations at a time. Depending on what the shader does you may at 
worst not be able to execute more than one scalar in parallel. Consider this simple code: 
 

 

float x = a + b + c; 

 

 

Even though this is just two scalar operations it will still require two instruction slots because the first 
addition has to be completed before the second can take place. Thus the code is sequential and in 
practice is executed as follows: 
 

 

float t = a + b; 

float x = t + c 

 

 
One thing to consider is that HLSL evaluates expressions left to right, just like C/C++. For some 
expressions this could matter. Take for example the following code: 
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float x = a + b + c + d; 

 

 

Left to right evaluation makes this code sequential and equivalent to this: 
 
 

float t = a + b; 

float u = t + c; 

float x = u + d; 

 

 
We can introduce explicit parallelism to the code simply by using parentheses. 
 

 

float x = (a + b) + (c + d); 

 

 

Now the a + b and c + d additions can be performed in parallel on different scalar units, which reduces 
this expression from 3 slots to 2. Shader optimizers may be able to do this automatically for you in some 
cases, but doing this explicitly improves the shader compiler’s ability to issue parallel instructions. To 
see what code is actually generated for a shader you can use the AMD GPU ShaderAnalyzer tool. 
 
When mixing scalars and vectors the order of operations can matter even more. It is recommended that 
you do as much of the scalar work first before expanding the math to vectors. Consider this for example: 
 

 

float4 a; 

float b, c; 

... 

float4 x = a * b * c; 

 

 

This code would be equivalent to this: 
 

 

float4 t = a * b; 

float4 x = t * c; 

 

 
This amounts to 8 scalar multiplications. This can be improved by adding parentheses: 
 

 

float4 x = a * (b * c); 
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That is equivalent to this: 
 

 

float t = b * c; 

float4 x = a * t; 

 

 
This amounts to only 5 scalar multiplications. Optimizations like this are not always obvious, but the 
performance improvement could be very substantial. On previous generation hardware you would 
probably not see nearly as big improvement, even though it could help there too in some cases. Always 
keep in mind what types your variables are and try to keep as many operations as possible as scalars 
before expanding to vectors. Out of old habit it is easy to think of vector operations as not being any 
more expensive than scalars just because they are a single instruction from the D3D runtime point of 
view, but that is not true. In fact, many “single instructions” in D3D10 are actually expanded to multiple 
hardware instructions under the hood, like for instance a vector division could add up to five instruction 
slots, while in other cases up to five instructions may be packed into a single instruction slot. 
 

Use the right data type 
In relation to the above discussion it’s also important to remember to use the right data type for your 
data. One might habitually make most or all variables float4, especially if you transitioned from 
programming shaders in assembly, which will result in many more instructions used than necessary. 
Also, if you fetch data from textures you don’t necessarily have to store that in float4 just because the 
function returns a float4. If you know what texture formats you will use for a particular texture, for 
instance if you use only luminance or you only care about RGB, then there is no reason to store the 
superfluous components. 
 

Avoid mixing types 
Type conversions are only available in the transcendental unit. This means that if you do a lot of type 
conversions performance will suffer. Small mistakes can sometime have a large performance impact. 
Consider this code: 
 

 

int4 main(int4 a: TEXCOORD) : SV_Target 

{ 

 return a + 1; 

} 

 

 

The above code consumes a single instruction slot. Now imagine that the developer did this mistake: 
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int4 main(int4 a: TEXCOORD) : SV_Target 

{ 

 return a + 1.0; 

} 

 

 

The code now takes 8 instruction slots. This is because 1.0 is a float, so the variable “a” will be 
converted to float4 (which requires 4 conversions), then the addition will be done in floating point and 
finally the result converted back to the return type int4 (another 4 conversions).  
 

Keep shader length reasonable 
While D3D10 has no upper limit on how long shaders can be, unlike D3D9, it does not mean it is a good 
idea to make extremely long shaders. The shader cache like any other cache has limited storage. So very 
long shaders could spill out of the cache and reduce performance. If the shader is in the range of several 
thousand instructions the throughput will go down as a result. 
 

Indexed constants 
Depending on the access pattern it is important to consider how you are bringing data into the shader. 
Keep in mind that constant buffer are typically accessed directly and thus have full coherency across the 
thread. Also, when accessed with indices it is typically fairly coherent. Thus constant buffer access has 
been optimized for coherent accesses. Textures on the other hand are more prone to scattered accesses 
and thus are more capable of coping with such an access pattern. If a certain set of data is accessed in a 
very random fashion it may be faster to use texture accesses than indexed constants. 
 

Indexed temporaries 
Shader Model 4.0 adds support for indexed temporaries which can be quite useful for certain tasks. 
However, don’t make a habit of using them where not necessary. Regular direct temporary access is 
preferable is most cases. One reason is that indexed temporaries are hard to optimize. The shader 
optimizer may not be able to identify optimizations across indexed accesses that could otherwise have 
been detected. Furthermore, indexed temporaries tend to increase register pressure a lot. An ordinary 
shader that contains for instance a few dozen variables will seldom consume a few dozen temporaries in 
the end but is likely to be optimized down to a handful depending on what the shader does. This is 
because the shader optimizer can easily track all variables and reuse registers. This is typically not 
possible for indexed temporaries, thus the register pressure of the shader may increase dramatically. This 
could be detrimental to performance as it reduces the hardware’s ability to hide latencies. To avoid this 
problem the shader optimizer may decide to use memory instead of temporaries which of course has 
performance implications of its own. 
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Also keep in mind that the HLSL compiler interprets code much more literally than it used to do for 
previous shader models. So just because a loop can easily be unrolled it doesn’t mean it will be. In fact it 
likely won’t be unless it for some reason can’t be compiled as a loop. As a result, if you access an array 
in the shader that you expected to be unrolled you may end up with a loop that contains indexed 
temporaries. This could slow down your code significantly. If this happens you can force the HLSL 
compiler to unroll the loop with the [unroll] tag. 
 

Vertex shader 

Vertex texture fetch 
Since the ATI Radeon HD 2000 is a unified architecture the same hardware used for texturing in the 
pixel shader is used in the vertex shader, so you will see the same performance you would expect with 
the same fetches from the pixel shader. This means that using vertex texture fetch is not just fast, but in 
many cases highly recommended. If you are vertex fetch limited it may be faster to distribute the data 
between a vertex buffer and a texture. In D3D10 you could use SV_VertexID to derive the texture 
coordinate so no extra data is needed for the texture lookup. The reason this is potentially faster is that 
there is different hardware for vertex fetch and texture fetch. If you are not bound by bandwidth for 
these fetches you could potentially double your input rate. 
 
Another reason for considering using vertex texture fetch is that you have a wider choice of formats, 
including compressed formats. In some cases you may also be able to take advantage of texture filtering 
or reduce data storage by using a smaller resolution. Using vertex texture fetch you have more options 
for making a more compact representation of your vertex storage.  
 

Geometry shader 

The geometry shader is a new pipeline stage available in Direct3D 10 that offers tremendous amount of 
flexibility for primitive processing. However, this flexibility comes with certain caveats to keep in mind 
as the performance characteristics of this shader are quite different from the other two shaders. In the 
traditional model where a vertex shader writes outputs to the pixel shader it is written to on-chip buffers 
so that there is no memory bandwidth consumed for communication between stages. However, the 
geometry shader breaks away from this simple model with small and known inputs and outputs. A 
geometry shader could produce any number of primitives within the declared maximum vertex count. 
For this reason the geometry shader often spills to memory. As a result, writing out the outputs is often 
the bottleneck. There are certain exceptions to this rule. When the geometry shader does 1:1 
input/output, i.e. does no amplification or reduction, the shader can run with similar performance 
characteristics as a regular vertex shader, and similarly since the geometry shader is expected to be 
commonly used for replacing point sprites (by expanding point primitives to a triangle strip with two 
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triangles) there is also special hardware for taking care of the 1:4 case. These two cases are subject to 
certain restrictions: 

• The shader uses minimal or no flow control. 
• The shader does not use SV_PrimitiveID, SV_ClipDistance, SV_CullDistance, 

SV_RenderTargetArrayIndex, or SV_ViewportArrayIndex. 
• The shader does not use resources (textures, buffers, or constant buffers). 
• The shader does not use primitives with adjacency. 
• The shader is symmetrical. That is, for each input vertex, the shader applies the exact same 

sequence of instructions to produce the output vertex. 
Some of these restrictions may be relaxed in future drivers. 
 

Max vertex count 
A geometry shader needs to declare its maximum vertex count. This sets the upper bound on how many 
vertices the shader outputs at most. This value is a hard limit and not primarily an optimization hint. Any 
vertex the shader might output beyond the declared maximum will be discarded. Therefore it is 
important that this value is not set too low. If you are experiencing missing geometry, make sure you 
have declared a sufficiently large maximum vertex count. The good news is that the ATI Radeon HD 
2000 series is largely insensitive to the declared maximum vertex count, so for cases where the actual 
maximum would be hard to know on compile time you can set it to a safe upper bound without worrying 
about performance impact. 

Keep data small 
When outputting data from the geometry shader to the pixel shader it is important to keep each vertex 
small. The smaller the vertex, the more vertices you can output per pass, which means you can do more 
work per pass. Alternatively it means you don’t use as much bandwidth. In either case, better 
performance can be had this way. In many cases the number of interpolators passed to the pixel shader 
can be reduced. A common case would be if a pixel shader needs both a light vector and a view vector. 
Conventional wisdom suggests that these should be computed in the vertex shader and passed to the 
pixel shader to reduce the amount of work in the pixel shader since they are linear and thus can be 
interpolated. This wisdom still holds true if you’re using a vertex and pixel shader only. So you would 
probably do something like this in the vertex shader: 
 

 

Out.position = mul(mvp, In.vertex); 

Out.lightVec = lightPos - In.vertex.xyz; 

Out.viewVec = camPos - In.vertex.xyz; 

 

 

If you are using a geometry shader you are likely bound by the output though, which means you will 
usually benefit from trading a couple of instructions in the pixel shader for less data written from the 
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geometry shader. For the case with a light vector and a view vector it is better to only pass the position 
and then compute both vectors in the pixel shader. So the geometry shader would do this: 
 

 

Out.position = mul(mvp, In.vertex); 

Out.vertex = In.vertex.xyz; 

 

 
And then the pixel shader would do this: 
 

 

float3 lightVec = lightPos – In.vertex; 

float3 viewVec = camPos – In.vertex; 

 

 

Depending on the balance of work between geometry shader and pixel shader it may in some cases be 
beneficial to take this a step further. The position could be computed in the pixel shader from the 
SV_Position register by back-projecting it from screen space to world space. This is possible in D3D10 
since the SV_Position defines z too (and w as well, but we don’t need it), unlike the VPOS register in 
D3D9 which only defines x and y. The resulting pixel shader would look something like this: 
 

 

float4 wp = mul(screenToWorld, float4(In.sv_position.xyz, 1)); 

float3 worldPos = wp.xyz / wp.w; 

 

float3 lightVec = lightPos – worldPos; 

float3 viewVec = camPos – worldPos; 

 

 

While it is often the output that is the bottleneck the input bandwidth is also often important too 
depending on the amount of amplification. With relatively small amount of amplification, and especially 
in decimation cases, the input could be a significant bottleneck. It is important to keep the input vertices 
as small as possible. It is usually beneficial to trade a few extra instructions in the vertex and/or 
geometry shader to pack data. On the output side one problem is that interpolators are interpolated as 
floats, so packing data in the geometry shader and extracting it in the pixel shader is usually not possible 
unless it is static across a primitive. Between the vertex shader and the geometry shader we don’t have 
that problem though, so packing data is practical and advantageous. For instance if you are passing a 
texture coordinate you may consider storing that in a single uint with 16 bits per component instead of 
using two floats. For a normal you can often pack that into a single uint as well, with 11, 11 and 10 bits 
for each channel. Best is if you store it this way in the vertex buffer already which also saves input 
bandwidth for the vertex shader, saves memory and takes the encoding cost out of the vertex shader. 
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If you have data that is being processed in the geometry shader that is just passed through from the 
vertex shader with little or no processing you may consider placing that data elsewhere, such as in a 
texture or constant buffer, and access that in the geometry shader directly instead. 
 

Merge vectors 
It is also often beneficial to merge data together into single vectors. While this doesn’t change the data 
size per se it can reduce the number of reads and writes the hardware issues to get the data in and out of 
memory. This is true on both input and output. For instance if you are passing two texture coordinates, 
instead of two separate float2 vectors you can pass the first in .xy and the second in .zw of a float4 
vector. Or if you are passing a texture coordinate and a normal, the faster option is likely to pack the 
texture coordinate into a uint and place that in .w of the normal to make it a single vector. Since there 
are no mixed type vectors in HLSL you would have to use asfloat(texCoord) to place the uint into the 
float .w and then use asuint(normal.w) when you unpack it. This would naturally not work on output due 
to floating point interpolation in the pixel shader, but is a reasonable thing to do on input to the geometry 
shader. 
 

Use frustum and back-face culling 
The geometry shader can be used to optimize rendering by doing more work in a single pass. For 
instance you can reduce the number of draw calls by up to a factor of six for render-to-cubemap cases by 
transforming each input triangle with the MVP matrix for each face and outputting to each face. To 
further optimize this you should implement frustum culling and back-face culling in the geometry shader 
to avoid outputting more primitives than necessary. Keep in mind that most primitives would only need 
to be output to one cubemap face. Theoretically a triangle could be in as many as 5 faces, but in a 
reasonably detailed scene the number of output faces per triangle is just slightly above one. Also, on 
average about half of the triangles would be back-facing. This means you can get performance several 
times higher than a naïve implementation that is writing out all primitives to all faces. A conservative 
culling can be implemented in relatively few instructions. Here is an example implementation: 
 
 

[maxvertexcount(18)] 

void gsCube(triangle GsIn In[3], inout TriangleStream<PsIn> Stream) 

{ 

    PsIn Out; 

 

    [unroll] 

    for (int k = 0; k < 6; k++) 

    { 

        Out.face = k; 

 

        float4 pos[3]; 

        pos[0] = mul(mvpArray[k], In[0].pos); 

        pos[1] = mul(mvpArray[k], In[1].pos); 
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        pos[2] = mul(mvpArray[k], In[2].pos); 

 

        // Use frustum culling to improve performance 

        float4 t0 = saturate(pos[0].xyxy * float4(-1, -1, 1, 1) - pos[0].w); 

        float4 t1 = saturate(pos[1].xyxy * float4(-1, -1, 1, 1) - pos[1].w); 

        float4 t2 = saturate(pos[2].xyxy * float4(-1, -1, 1, 1) - pos[2].w); 

        float4 t = t0 * t1 * t2; 

 

        [branch] 

        if (!any(t)) 

        { 

            // Use back-face culling to improve performance 

            float2 d0 = pos[1].xy * pos[0].w - pos[0].xy * pos[1].w; 

            float2 d1 = pos[2].xy * pos[0].w - pos[0].xy * pos[2].w; 

            float w = min(min(pos[0].w, pos[1].w), pos[2].w); 

 

            [branch] 

            if (d1.x * d0.y > d0.x * d1.y || w <= 0.0) 

            { 

                [unroll] 

                for (int i = 0; i < 3; i++) 

                { 

                    Out.pos = pos[i]; 

                    // Fill output structure here ... 

                    Stream.Append(Out); 

                } 

 

                Stream.RestartStrip(); 

            } 

        } 

    } 

} 

 

 
The above code has been highly tuned to run efficiently and not require additional inputs. For each face, 
all input vertices are first transformed by the appropriate MVP matrix. This would have to be done 
anyway. With the positions in clip space the X and Y positions are compared to W coordinate. The 
frustum is the area where –W < X < W, and similarly for Y. In depth direction it would be 0 < Z < W (or 
–W < Z < W in OpenGL). We don’t check for Z in this code though. Depending on your situation you 
may want to add a check for Z as well. In our tests this did not improve performance, but your mileage 
may vary. Each component in t0, t1 and t2 is a test for one screen edge for each vertex. By multiplying 
these together we end up with four values saying whether the triangle was fully behind that edge plane. 
If we are not fully behind any plane, we move on to the back-face test. Note that this is just a 
conservative check. A triangle may not be fully behind any individual plane but still be outside the 
frustum. However, this test will catch the vast majority of the triangles with few instructions. Also note 
that even though we don’t check in Z direction most triangles behind the near clipping plane will be 
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culled by either of the X and Y planes anyway as they intersect at W = 0 and leave only a small pyramid 
behind the near plane unaccounted for. 
 
The back-face culling code is also a conservative check. It will work as long as W > 0 for all vertices. 
Most triangles where this is not the case would already have been culled in the frustum culling code, 
however, we still need to check this because some triangles may intersect the W = 0 plane and could get 
incorrectly culled as that breaks the test, which is quickest done by checking the smallest W against 
zero. The math used to check the triangle faceness can be derived by dividing X and Y with W for all 
points to get 2D coordinates, take the direction from the first to the second vertex, rotating that 90 
degrees by swapping X and Y and reversing the sign of Y to get the edge normal, and then check the 
third vertex against this normal to find the winding. Simplifying that and taking out the divisions by 
multiplying on both sides of the equation we come up with the math above. 
 

Pixel shader 

Don’t return float4 if not necessary 
In PS3.0 shaders and earlier you always had to return a full float4 vector. The shader would not compile 
if you tried to return anything less. This is of course wasteful if you are rendering to a one-, two- or 
three-channel render target. It is also common that you don’t care about alpha, but you were still forced 
to write something to it. This restriction has been lifted in PS4.0, so you can now return only as many 
components as you need. Returning a float3 instead of a float4 can in many cases reduce the number of 
instructions needed, especially on scalar architectures. It easily happens that one think in terms of 
vectors when writing shaders and do all computations in float4 even though you only care about RGB in 
the end. On earlier hardware this would come at only a small cost at worst. On the scalar architecture of 
ATI Radeon HD 2000 it could potentially waste one scalar unit for computing a value that is not used 
which would result in longer shaders and reduce overall performance. 
 

Texturing 

Texturing performance 

Texturing is with a few exceptions required for pretty much all kinds of rendering. It is therefore of 
utmost importance that hardware texturing capabilities are well understood and texturing is handled 
properly to achieve the best performance. Modern hardware is equipped with many more ALU units 
than texture units as modern techniques and algorithms are more math heavy than every before. It is also 
the case that texture units are at the mercy of the available memory bandwidth, so equipping the 
hardware with more units would give diminishing returns. Given that memory bandwidth doesn’t grow 
at the same rate as computational power it is expected that the ALU to TEX ratio will continue to grow 
as it has done over the years, from the days when multi-texturing was the buzzword and hardware was 
equipped with two or more texture units per pipeline to today when the opposite is true. A big step 
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forward was the ATI Radeon X1900 that increased the ALU to TEX ratio to 3:1. With ATI Radeon 
X2900 this has increased even further to 4:1 as there are 64 shader cores and 16 texture units. With the 
scalar architecture with 5 values instead of 4 per pipe the actual ALU throughput has increased more 
from the previous generation than what that 4 versus 3 might indicate. For this reason, it is generally 
favorable to write ALU centric algorithms over texture heavy ones. On the other hand, the ATI Radeon 
2000 texture units are much more powerful than previous generations for wide texture formats, which is 
important for things like HDR rendering. 
 
One thing to keep in mind is that the quoted 4:1 ratio is the best case scenario where texels are returned 
in a single cycle. There are many reasons why a texture unit might operate at a much slower pace, which 
increases the ALU to TEX ratio even further. Things that might increase the texture sampling time 
include: 

• Trilinear 
• Anisotropic 
• Wide texture formats 
• Volume 
• Cubemap 
• Texture projection 
• Lookup with gradients 
• Different LOD or gradients across a pixel quad 

 

Filtering 
For a plain bilinear lookup in a 2D texture on a 32bit format the cost you pay is a single cycle. As you 
add trilinear that doubles to two. Mipmap clamping (such as when magnifying or sampling only from 
the lowest level in the mipmap chain) may reduce this to bilinear cost though, so the average cost might 
be lower in real-world cases. If you add anisotropic that multiplies with the degree of anisotropy. That 
means a 16x anisotropic lookup can be 16 times slower than a regular isotropic lookup. Don’t be too 
alarmed though because that hit is only taken on pixels that actually require that. For instance a large 
ground plane in a game would only need to take the 16x cost on the most distant pixels, and they would 
only be a few percent of the total pixels. Most close-up pixels, which would be the vast majority, would 
probably not need anisotropic at all, thus take no performance hit over trilinear. In real-world cases you 
can usually count on the anisotropy to be less than 2 on average. 
 

Texture formats 
The texture format has a quite large impact in texture sampling performance. On earlier generations the 
cost was 1 cycle per 32 bits. So all 32 bit formats and smaller (including DXT, ATI1N and ATI2N) were 
single cycle. 64 bit formats took two cycles and 128 bit was four cycles. The ATI Radeon 2000 is more 
powerful and can now do a bilinear lookup in a single cycle on RGBA16F texture. RGBA32F is two 
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cycles. Note that the fixed point RGBA16 still is two cycles though, unlike the floating point format of 
the same size. 
 

Cubemaps and texture projection 
Another difference in the ATI Radeon 2000 architecture versus the previous generation is that the 
texture units have offloaded some work to the ALU for certain lookups, which makes sense given the 
amount of ALU power that is available. On ATI Radeon X1000 series cubemaps and projected lookups 
did not incur any extra cost. On ATI Radeon 2000 they come at a cost in ALU, but the TEX cost 
remains the same. So a projected texture lookup costs two ALU instructions and a cubemap lookup costs 
three. These don’t use all scalars though, so actual ALU cost may be lower in real world cases as other 
work would fit into the empty scalar slots. Also, if you use the same texture coordinates for looking up 
into several textures you only get the ALU cost once. Lookups in a volume texture comes at twice the 
cost of 2D textures. This is true on both current and previous generation hardware. 
 

Gradients 
When doing texture lookups with gradients an additional two cycles are added. This means a regular 
bilinear lookup that normally takes one cycle takes three with gradients. On the previous generation you 
took this two cycle hit on every lookup. On ATI Radeon 2000 gradients can be stored across lookups, so 
if you do a lookup with the same gradients again on the same sampler, you don’t take the two cycle hit. 
So a gradient lookup in a loop will not come at a significant cost compared to a regular lookup as long 
as you pass the same gradients. This is important for instance for Parallax Occlusion Mapping. 
 

Depth & Stencil efficiency 
One of the most important things to keep in mind during development is that rendering should be done 
with Hierarchical-Z and Early-Z techniques in mind. This was true on previous generations and 
continues to be true on this generation. A good use of depth and stencil optimizations can allow the 
hardware to cull large chunks of redundant rendering before the pixel shader, which can improve 
performance substantially. 
 
The Z-culling abilities in the ATI Radeon HD 2000 series are more powerful than ever. Some of the 
improvements include the addition of Hierarchical-Stencil and enhancement to Early-Z so that it 
remains operational in almost all cases. Another important improvement is the ability to store the Z 
subsystem masks and information in video memory whereas previous generations had a fixed size on-
chip buffer. This means that unlike previous generations all Z and stencil optimizations will remain 
operational for all depth-stencil buffers regardless of how many depth-stencil buffers you create. For 
more in-depth information about the Z and stencil optimizations see the Depth in-depth paper on the 
subject. Here we repeat the most important things to keep in mind. 
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Render in front-to-back order and/or use a Pre-Z pass 
This is one of the most important things to remember to get a good speedup from Z-culling. For 
anything to be culled it has to be occluded by previously rendered surfaces. Thus if you render in back-
to-front order you will see no performance improvement, whereas front-to-back rendering can approach 
the performance of no overdraw. If the overdraw factor is for instance 4 on average in a particular scene 
the front-to-back ordering could potentially be up to 4 times faster than back-to-front. It’s not necessary 
to do extremely fine-grained sort, often a per-object sort can go a long way. For a decent sort within 
objects a tool like Tootle can be used. Depending on the complexity of the scene it may be worth 
considering using a pre-Z pass where only the depth is rendering to lay out the scene depth in the depth 
buffer. This way pixel shading will essentially be done with no overdraw. However, the pre-Z pass itself 
is not for free, so for very simple scenes it may not be worth it. Also, it’s not necessary to render the 
entire scene in the pre-Z pass, only objects that are major occluders need to be included. Even though 
the pre-Z pass does not come with any pixel shader processing it is still worth it to do some rough object 
based sorting for the pre-Z pass itself. If a pre-Z pass has been executed though, it is not necessary to 
sort the scene for the main rendering passes. In that case it’s recommended that the main rendering pass 
be sorted according to shaders and textures to reduce state change overhead. 
 

Avoid shader depth output 
Writing depth from the shader is generally discouraged. Shader depth output causes Hierarchical-Z and 
Early-Z to be disabled because the shader has complete before the depth test can be done, so no depth-
stencil optimizations can be used to accelerate such passes. Additionally, shader depth output can reduce 
performance for subsequent passes as well since shader depth output interferes with depth compression. 
You should consider alternative approaches to solve the problem. If it is just for killing pixels, it is more 
efficient to use discard in the pixel shader. If shader depth output is really necessary, consider moving 
the passes using it as close to the end of the frame as possible to avoid performance impact on other 
passes. 
 

Draw the skybox last 
Many games are still rendering the skybox first. This used to be fastest several generations ago because 
you could fill the color buffer directly without doing the depth test. However, on modern hardware you 
should render the skybox at late in the frame as possible. Only transparent objects blended against the 
skybox may be rendered after it. The reason for this is that the skybox itself tends to be occluded by 
large parts of the scene. If you render the skybox first you’re shading a lot of pixels that will be 
overwritten later on. This is a waste of pixel processing and bandwidth. By rendering the skybox in the 
end only the necessary pixels will be shaded. When rendering the skybox last you may want to peg it to 
the far clipping plane to avoid any issues with the skybox cutting into the scene. This can easily be 
accomplished either by copying the fourth row of the MVP matrix into the third so that Z and W 
evaluates to the same value and hence Z / W becomes 1.0. Alternatively, the W value can be copied into 
Z in the vertex shader. 
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In a similar fashion objects that are known to be in front of the scene should be drawn first. This 
includes the gun of the main character in a typical FPS game and opaque parts of the GUI. These may 
cover a surprisingly large percentage of the screen pixels. 
 

Dealing with the small batch problem 
The “small batch problem” is something you hear about increasingly more frequently these days. A 
number of factors has driven us into a situation where the software overhead for rendering has become a 
significant problem so that if the scene is rendered in a naïve way the API calls easily becomes the 
bottleneck and performance is significantly lower than what one might expect. One reason for this is the 
ever increasing GPU performance. CPU performance has of course also increased, but it has happened 
at a much slower pace. It was easier to be bound by the GPU in the past, so software overhead was 
essentially hidden. Another reason is that GPUs support an ever increasing number of features, which 
makes drivers more complex and adds overhead. In addition, games and applications strive to produce 
ever more detailed scenes which often results in more API calls. 
 
A typical batch-limited D3D9 game will be bottlenecked by the number of draw calls or setting shader 
constants or both. To achieve good performance a standard rule of thumb is that you should not issue 
more than a few hundred draw calls. However, due to limitations in D3D9, you need separate draw calls 
as soon as you change any form of state, including textures, shader constants and other attributes that 
often varies with each object or material, so chances are you will quickly exhaust the draw call budget. 
Furthermore, if you need to render the scene to a render target or even a cubemap the problem 
multiplies. Some of these shortcomings have been addressed by Microsoft in D3D10 and by an 
improved driver model in Vista.  
 

Taking advantage of D3D10 

Just porting an application from D3D9 to D3D10 does not necessarily make all small batch problems go 
away. If you’re doing all your rendering in D3D9 style, chances are you might still be API bound. Here 
are a few areas to look into. 
 

Constant buffers 
In D3D9 you have a fixed register set for shader constants. Before rendering with a shader you need to 
set the constants it is using. The problem with this approach is that the register set is small and once you 
set a constant to something else your previously uploaded data is permanently lost. As a result, the same 
data may be repeatedly uploaded to the hardware because it could not easily be preserved across passes 
or frames. In most applications a lot of shader constants are either static per session or static per frame, 
so with a better programming model were data could be preserved a lot of shader constant calls could be 
eliminated and the amount of data transferred across the bus each frame be reduced. D3D10 changes the 
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way shader constant are handled by introducing constant buffers. These are buffers that are conceptually 
pretty much identical to vertex buffers, except they hold constants. In fact, you create constant buffers 
and vertex buffers using the same CreateBuffer() call in D3D10, the difference is just what flags you 
pass in. You can create any number of constant buffers and instead of reuploading data you can often 
just switch constant buffer. 
 
A plain port from D3D9 to D3D10 will probably not improve the shader constant situation much, like if 
you’re doing things in D3D9 style and just call Map()/Unmap() or UpdateSubresource() instead of 
D3D9’s SetPixelShaderConstantF() and SetVertexShaderConstantF(). What you need to do is analyze 
your application and restructure it in such a way that you can keep data on-chip without uploading it 
again. Don’t just create one constant buffer per shader, or worse, one global constant buffer mirroring 
the D3D9 register set that you’re updating all the time. Especially if you only partially update a buffer 
since that is very slow. Always upload the entire buffer when you update data and always supply the 
D3D10_MAP_WRITE_DISCARD flag to the Map() call. If you frequently find that you only need to 
update some part of it, consider separating you data into different constant buffers. But keep in mind that 
using too many constant buffers in a shader could be detrimental to performance, so try to keep the 
number of constant buffers reasonable. Also group your data logically so that it makes sense to update 
an entire buffer at once. Also keep in mind that constant buffers in D3D10 are essentially memory 
buffers rather than registers like in D3D9, so for best performance it’s recommended that you also group 
data according to access pattern for best cache coherency. Try not to access data from several different 
constant buffers at once in a shader. 
 

Texture arrays 
One of the new features in D3D10 is texture arrays. A texture array is a single resource that consists of a 
series of textures, each with their own mipmap chain. It is different from a 3D texture in that there is no 
filtering across slices, and mipmaps don’t shrink in Z-direction, so the number of slices doesn’t change. 
 
Texture arrays are useful to reduce draw calls and state changes. With a texture array you can easily 
switch material in-flight instead of having to resort to issuing a new draw call because you need to 
change the texture. With texture arrays you can simply access the texture you need from the array. This 
is great in combination with instancing. Each instance can now have its own texture and still be rendered 
in a single draw call, you can just use SV_InstanceID to select slice. 
 
Even though you don’t need a separate draw call for each material when using texture arrays it is still a 
good idea to arrange your rendering such that accesses to the texture array is roughly sorted. Just like 
spatially close accesses in the UV plane is best for texture caching it is equally important to try to keep 
as many subsequent accesses together on the same slice. For instance one might implement an 
instancing-like algorithm in the geometry shader that outputs each triangle of a model to several 
different locations. If each instance has a different texture slice this could result in very scattered 
accesses with poor texture cache utilization. 
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Sampler states 
In D3D10 the sampler states have been decoupled from the texture units. This means for instance that 
you can sample the same texture with different filters in the same shader. You don’t need to bind the 
texture to two different texture units. The big advantage though is that you can now create a number of 
commonly used sampler states and reuse with many texture units. In many cases a few of the most 
commonly used sampler states could be bound on for instance the first 8 sampler state slots and stick 
around across most of the frame or even across the entire run of the application. This could reduce the 
number of sampler state changes significantly. 
 

General optimization 

Clear 
Clearing color and depth buffers is important to keep hardware optimizations alive. In the past it was not 
uncommon to dodge clears through various clever tricks. This tends to be counterproductive on modern 
hardware though. Depth-stencil buffers should always be cleared with a call to Clear() in D3D9 or 
ClearDepthStencilView() in D3D10. This resets all internal data associated with HyperZ, which allows 
it to operate at full efficiency. If the buffer were to be cleared by rendering primitives into it the 
efficiency would be reduced over the frames. The same applies to color buffers, in particular 
multisampled ones. The hardware applies various compression techniques to reduce the bandwidth 
required to read and write color and depth-stencil buffers. Clearing ensures that the related hardware 
states don’t go stale and reduce efficiency. 
 
Important to note is that even though clears are important you should only clear buffers if needed. If you 
are not rendering into a buffer on a certain frame you don’t need to clear it. For some types of simple 
rendering, such as updating a render target with a fullscreen quad, a color clear may not be necessary.  
 

Instancing 
Instancing is a very useful tool for reducing the number of draw calls. This is especially important in 
D3D9, but while the per draw call overhead is lower in D3D10 it is still important to keep number of 
draw calls down. The ATI Radeon™ HD 2000 series was designed with native support for instancing. 
This means that instancing should always be faster compared to rendering the same objects with 
multiple draw calls. 
 
An important tool D3D10 gives you is the built-in SV_InstanceID value. It gives the shader knowledge 
about which instance it is currently rendering. On SM 2.0 hardware an instancing-like technique was 
sometimes implemented using vertex shader constants to store instance data. While this often didn’t cut 
down the draw calls to one it significantly reduced the number of draw calls necessary. On the other 
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hand it required multiple copies of the model to be stored in the vertex buffer. With the additional 
flexibility of D3D10 you can now implement the equivalent technique without multiple copies and with 
larger number of instances per draw call. Also, you no longer need to store an instance ID in the vertex 
buffer since that is generated automatically for you, which saves memory and bandwidth. Using 
SV_InstanceID you can index into an array of instance data in the constant buffer. Like with vertex 
texture fetch as discussed earlier in this paper this can result in better performance because it streams 
data from two different sources, one using the vertex fetch hardware and one using the constant fetch 
hardware. Since there are limited number of units for both you may improve your input rate if you 
stream from both sources as long as there is enough bandwidth to feed them both. If you are accessing 
per-instance data in any more fancy fashion than straight indexing from the instance ID it may be faster 
to use texture accesses instead since constant buffer accesses are coherency sensitive. 
 

Über-shaders 
An über-shader can be loosely defined as a shader that does more than one thing. In a traditional shader 
library you often have one shader for each specific task. One problem with that is the exponentially 
growing number of permutations. The other problem is that you need to change the shader and issue a 
new draw call for each particular permutation that you wish to render with. Über-shaders can solve that 
problem by being capable of rendering many different permutations without changing the shader or 
issuing a new draw call. It can be great in combination with instancing and texture arrays. 
 
There are pitfalls with über-shaders though. If draw calls, state changes or the number of shader 
permutations are not an issue in your applications chances are that you would be better of sticking to a 
traditional approach. Über-shaders are longer and more complex. The number of instructions that needs 
to be executed typically increases a bit even if you use branching, as does the number of temporaries 
consumed by the shader. The number of temporaries is important because the fewer temporaries a 
shader uses the more threads the hardware can keep alive simultaneously. The more threads that are 
active the better the hardware can hide latencies, which is very important for instance for texture fetch 
efficiency. Also, if you do use über-shaders moderation is the key. If a shader becomes extremely long, 
for instance several thousand instructions, instruction throughput will go down as it won’t fit in the 
shader cache. 
 

Texture atlases 
While D3D10 introduces texture arrays that solve many of the problems that were previous typically 
solved with texture atlases it doesn’t mean atlases are no longer a good solution, especially if you are 
still on D3D9. If you already have a working texture atlas solution, there is no particular reason for why 
you should port that to texture arrays when transitioning to D3D10. 
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In some cases you may want to use a texture atlas even in D3D10. D3D10 texture arrays are restricted to 
the same dimension for all slices and there are many cases where you might want to use textures of 
different sizes. In such cases a texture atlas may be a better solution. 
 

Top 10 optimization hints 

Parallelize your code 
In order to utilize the power of the scalar architecture it is important that the code is parallel. Avoid 
unnecessarily serializing your instructions and use parentheses to introduce explicit parallelism where 
possible. See the Parallelize your code section in this document. 

Optimize all shader stages 
On a unified architecture it is not just the dominant shader that dictates your final performance, but all 
shader stages consume resources from the shared pool of computation power. The gain will naturally be 
larger by optimizing the most heavily loaded shader, but improvements to the less loaded shaders will 
still improve performance. So unlike in earlier hardware generations a pixel shader limited case might 
see performance improvements by optimizing the vertex shader. See the unified architecture section. 

Make proper use of Z optimizations 
Render your scene in rough front-to-back order or use a Pre-Z pass. Draw your skybox last. Draw your 
main character gun, opaque GUI or other front-most objects first. Avoid shader depth output. See the 
Depth & Stencil efficiency section. 

Use vertex texture fetch 
Getting data into your vertex and geometry shader is not only a question of memory bandwidth, but the 
fetching instructions may also be a limiting factor. By using vertex texture fetch you could potentially 
double your input rate by utilizing two separate fetching mechanisms. Splitting the data roughly equally 
between the vertex buffer and a texture often improves performance noticeably. See the Vertex texture 

fetch section. 

Use culling in the geometry shader 
The geometry shader is typically limited by the output. If it can be quickly determined that a triangle is 
outside the frustum or that it is back-facing you can usually achieve a significant performance 
improvement by not writing it out. For instance in a render-to-cubemap case most triangles need only be 
written to one face thus may cut down output by almost a factor of six. See the Use frustum and back-

face culling section for details and example code. 
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Minimize geometry shader I/O 
The geometry shader is typically limited by output. Input may also matter in many cases. By keeping the 
input and output data small you can see significant performance improvement. Packing data or trading 
GS output for a few instructions in the pixel shader is typically beneficial. See the Keep data small 
section. 

Use instancing 
While D3D10 has improved things it continues to be the case that the number of draw calls can be a 
significant limitation to performance. It is therefore a good idea to design your application around 
instancing. D3D10 makes instancing better than ever with an improved interface and tools like the 
SV_InstanceID system value. See the Instancing section. 

Use the right data types 
Don’t use vectors when a scalar is enough. Don’t compute alpha if you only care about RGB. Avoid 
excessive type conversions. See the Use the right data type, Avoid mixing types , Scalar ALUs, and 
Don’t return float4 if not necessary sections. 

Use dynamic branching 
Dynamic branching can be used to avoid doing unnecessary work, such as computing lighting for parts 
of a scene that is in shadow. Good use of dynamic branching can provide a significant performance 
increase. See the Dynamic branching section. 

Use constant buffers in D3D10 style 
When porting a game or application from D3D9 it is important to not just directly translate D3D9 calls 
into equivalent D3D10 calls. If you are uploading as many constants as in D3D9 you didn’t really gain 
anything. Try to keep as many constants around in video memory and only keep updating truly dynamic 
constants. See the Constant buffers section. 
 
 


