2D Programmer’s Guide

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.1

2D PROGRAMMER'’S GUIDE

2D Graphics Engine

The 2D graphics engine performs BitBLT (bit block transfer) operations on the frame buffer. During
a BitBLT operation, a destination array of pixels in the frame buffer are replaced by a pixel-by-pixel
combination of data from a source array of pixels in the frame buffer or host memory. These pixels
are also replaced with data from a destination array of pixels in the frame buffer and data from a
pattern. This is shown in Figure 2-1.

FRAME BUFFER
SOURCE
RECTANGLE
DESTINATION
RECTANGLE
ROP PATTERN

Figure 2-1. 2D Graphics Engine BitBLT

The pixel-by-pixel combination (called raster operation or ROP) is one of the 256 possible combi-
nations of the source, data, and pattern using the NOT, OR, XOR, and AND logical operations.
The pattern is an 8 x 8 color or monochrome pattern, or a solid color.

The 2D engine is programmed by Memory-Mapped registers that define drawing operations and
the various parameters required for those operations. As shown in Figure 2-2, it consists of a con-
trol unit, a pixel path, and a frame buffer.

September 1996 2-2 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

F————— e e e - - —— — 1
| CONTROL UNIT

I -~ HOST | IMMEDIATE

| INTERFACE ™ REGISTERS

|

I GENERAL

| FIFO |—— 5| REGISTERS

|

|

| SRAM 0 SRAM 1 SRAM 2 | I
! OPO oP2 I L
| OP1 Lo A
I | I |ForEGROUND
| Y Y / COLOR
| MONOCHROME TO COLOR CONVERTERS | I

~——_| |BACKGROUND
| | | COLOR
I |
| PHASE ALIGNMENT : |
| Jhl ¥
| Y Y | |

<l
| RASTER OP UNIT TRANSPARENCY UNIT | | I BITMASK
| | L .
. ¢ -
I FIFO |
| | PIXEL PATH |
Ll — — — — — _ _ _ — _l_ — o _ L _-___ a
rr—-—--"—-- - — -y - -""=-"""""-""-"7™T"— - - — A
FRAME BUFFER WRITE |
ENABLE [**

FRAME BUFFER

|
|
|
|
| Y
|
|
|
|

Figure 2-2. 2D Graphics Engine Model and Data Flow

Copyright 1996 — Cirrus Logic Inc. 2-3 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

21.1

The control unit contains the immediate and general registers, the drawing control and the com-
mand/data FIFO. The pixel path contains the three operand fetch units (OFUO, OFU1, OFU2), the
ROPs unit, the transparency control, and the pixel FIFO. The frame buffer consists of 1, 2, 4, or 8
Mbytes of Rambus RDRAM memory.

Writes to the immediate registers take effect immediately and do not go through the write FIFO.
These are used to read 2D engine status and write general control information. Writes to the gen-
eral registers are queued through the 25-entry write FIFO and are used to set drawing parameters
and initiate drawing operations. During a BitBLT operation, color pixel data is loaded into SRAMO.
Color and/or monochrome pixel data is loaded into SRAM1 and SRAM2. Monochrome data is
converted to color using the foreground and background color registers. Color pixel data is aligned
with the destination. Then the three operands are combined in the ROPs unit to form the output
pixel data that can be stored in the frame buffer, sent to the host or stored in one SRAM. If pixel
transparency is enabled, SRAM2 is used as the transparency mask. For monochrome masks, the
output pixel is written if the corresponding bit in SRAM2 is ‘1’. For color masks, the output pixel is
written if the corresponding pixel in SRAM2 compares with the Background color. (The compari-
son can be programmed to be ‘equal’ or ‘not-equal’.) SRAMO is typically the destination operand,
SRAM1 is typically the source operand, and SRAM?2 is typically the pattern operand.

2D Frame Buffer

The 2D frame buffer is organized as a rectangular array of packed pixels, with pixel ‘0,0’ at the
upper left-hand corner and pixel ‘xmax,ymax’ at the lower right-hand corner. A rectangular portion
of the frame buffer (the display rectangle) is visible on the display device. In the upper left-hand
corner is pixel ‘xs,ys’ and in the lower right-hand corner is pixel ‘xe,ye’ (0 < xs < xe < xmax, 0 £ys
<ye < ymax). The display rectangle is shown in relation to the frame buffer in Figure 2-3. The dis-
play rectangle is typically aligned to the upper-left corner of the display buffer (xs = 0, ys = 0), but
can be positioned anywhere on the frame buffer surface. Pixel sizes of 8, 16, 24, and 32 bits are
supported. Pixel addresses given to the 2D engine are always specified in two dimensional ‘x,y’
coordinates.

PIXEL ‘0,0’ —L INCREASING x ‘
PIXEL ‘xs,ys’ >.
DISPLAY PIXEL ‘xe,ye’
INCREASING y RECTANGLE
PIXEL ’
v FRAME BUFFER Xmax,ymax

Figure 2-3. 2D Frame Buffer

September 1996 2-4 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.1.2

2.1.3

Bit Swizzle

Bit swizzling is the end for end reversal of bits in a byte. For example, the swizzle of 10001101b is
10110001b. In some cases, monochrome glyphs (fonts or brushes) are presented to the program-
mer in a format that requires bit swizzle prior to being color expanded into the frame buffer. The
CL-GD546X provides a mechanism for implementing bit swizzle during host-to-frame-buffer BLTs.
Setting the CONTROL.SWIZ bit during a host-to-frame-buffer BLT causes the bytes within the
HOSTDATA dwords to be swizzled. The byte order within the dwords remains the same. If byte-
order reversal is also required, write the HOSTDATA through register memory aperture two or
three.

Patterns

Patterns can be thought of as an ink-stamp on a roller. As the roller is moved left to right, the image
is repeatedly copied onto the destination. At the end of a row, the roller is moved down one image
and the process is repeated. Patterns are used when the source for a rectangular block of pixels
repeats in x and y. This is achieved by having a small source rectangle repeatedly filling up the
destination. When the left end of the pattern is reached during the BitBLT to the destination, the
source pointer is reset to the right end of the pattern. When the bottom of the pattern is reached,
the source pointer is reset to the top of the pattern. All patterns supported by hardware are 8 x 8
pixels. The point inside the pattern that is anchored to the upper-left corner of the display can be
selected using the PATOFF register.

Conceptually, patterns should be thought of as 8 x 8 square pixel regions that can be tiled onto
the screen. The upper-left corner of the pattern tile is aligned to the upper-left corner (0,0) of the
frame buffer. The alignment is adjustable to any point within the tile by setting the x, y values in
the PATOFF register.

Patterns are not stored in rectangular format in the frame buffer. They are stored linearly. A mono-
chrome (1 bpp) pattern is stored in a single gword (64 bits). An 8-bpp color pattern is stored in 64
sequential bytes. A 16-bpp color pattern is stored in 128 sequential bytes. 24-bpp and 32-bpp
color patterns are stored on two adjacent lines with half the pattern on each line. The first line con-
tains the top four lines of the pattern and the second line contains the bottom four lines. The first
line of a 24- or 32-bpp color pattern must be on an even scanline address in y.

For optimal performance, the software should align patterns to tiles. Crossing tile boundaries puts
a penalty on memory performance. The architecture allows any pattern to fit within a single tile
and the programmer concerned with optimal performance is encouraged to respect this con-
straint. See Chapter 5, “System Operation” for more information.

Copyright 1996 — Cirrus Logic Inc. 2-5 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

214

2.15

2.2

Monochrome-to-Color Expansion

Monochrome bitmaps can be converted to foreground and background colors, or to all ones and
all zeroes (white on black). Strings of ones and zeroes are fed into the ROP unit and are output
respectively as foreground color and background color. Source (OP1) or pattern (OP2) operands
can convert monochrome pixel data to color. Typical use of monochrome-to-color conversion is for
transferring font maps to characters on the screen, or for hatched brushes.

Foreground and background colors are selected by placing the appropriate values in the
OP_opFGCOLOR and OP_opBGCOLOR registers and turning off DRAWDEF.SATn. With
DRAWDEF.SAT.n on, the foreground color is all ones (-1) and the background is all zeroes (typi-
cally white on black). Refer to the Laguna VisualMediall Accelerators Family — CL-GD546X Vol-
ume | (Hardware Reference Manual, Second Edition, September 1996) for register information.

Transparency

Two types of transparencies can be generated; one using a monochrome input data stream, and
another using a Color Comparison register. When transparency is turned on, OP2 fetches trans-
parency mask pixels and makes the decision whether or not to enable writes to the destination
based on the compare operation. OP2 can still be used in the raster operation.

Monochrome transparency causes the pixels mapped from a one to be written with the result of
the current raster operation. This causes pixels mapped from a zero to retain their prior value. A
typical use of this type of operation puts foreground solid colored fonts over an arbitrary existing
background.

Color transparency compares an incoming data stream with a fixed OP_opBGCOLOR value on a
pixel-by-pixel basis. It then writes the ROP result or retains the destination pixel based on the
result of the comparison. Transparency masks can be aligned with source data, destination data,
or any other region. Source-aligned color transparency allows the programmer to simulate chroma
keying (also known as blue screening).

2D Graphics BitBLT Operations

This section guides the system programmer in the most effective use of the CL-GD546X 2D
graphics engine for implementing display drivers, and special graphics and video application soft-
ware. Methods for implementing typical operations are discussed and supplemented with tested
examples.

September 1996 2-6 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.2.1 Commonly Used BitBLT Control Registers

Table 2-1 illustrates the fields in the three most-used 2D Engine Control registers in the
CL-GD546X.

Table 2-1. Primary 2D Engine Control Registers

BLTDEF
15 14|13|12 11 10 | 9 8 7|6|5|4 3|2|1|O
OP1= OPO, OP1, OP2,
YDir RESult
OP2 DST SRC PAT
FB =1
HO =2 SM =0 SM =0
Pattern | Color =0 Pattern |Color=0
Dn =0 SMO =4 Off =0 SM =0 FB =1 FB =1
Off =0 | Mono =1 Off =0 [Mono=1
Up =1 SM1 =5 On=1 FB =1 HO =2 HO =2
On=1| Fill=1 On=1 | Fill=1
SM2 =6 Fill =3 Fill =3
SM1:2 =7
DRAWDEF
15 | 14| 13] 12| 11 10987|6|5|4|3|2|1|0
Pixel
Mono Saturate Transparency ROP
Tag
OP1 | oOP2 Opera-
ton | suitch
Raster Operation Code
GRX=0
Video=1 B(_B(g:) off =0
Off =0 | Off =0 - 00.FF
On =1
on=1|o0n=1 F(E(llz)
LNCNTL
15 14 13 12 11 10 9 8 7 6 | 5 | 4 3 2 1 0
YUV 4:1:1 Y SH| X sH|Y_INT|X_INT
~ Chain | Auto Graphics Pixel Format | N ERPO-|ERPO-
Averat?s, con RINK | RINK | | ATE | LATE
8 bpp CLUT =0
16 bpp 1:5:5:5 =1
wv oW 16 bpp 5:6:5 =2
pp 9160 = i .
HOLD | pass BLT=0 Shrink | shrink
Off =0 YUV 4:2:2 =3 =1 =1 Off =0 | Off=0
Resize
_ On =1 32 bpp aRGB =4 Stretch | On=1 | On =1
Off=0 | off =0 =1 St:eg:h =0
_ 24 bpp RGB =5 -
On=11on=1
AccuPak = 6
Reserved =7

Copyright 1996 — Cirrus Logic Inc. 2-7 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.2.2

BitBLT Programming Overview

Standard BitBLT operations are used for moving rectangular blocks of pixels from one location to
another. Source data comes from the Host, Frame Buffer, or operand SRAM caches. Independent
of pixel size, the result data is written to the Host, SRAM, or the Frame Buffer as color (8, 16, 24,
32 bpp) data or byte data. Source and destination extents are the same with the exception of pat-
tern sources, which are cyclic on eight pixel by eight-line boundaries. Stretch and shrink BitBLTs
do not have the same source and destination extents. All 256 three operand raster operations are
performed on any combination of the three source locations. Monochrome data, color data and
transparency masking can all be combined in a single BitBLT operation. BitBLT programmers
should carefully read the detailed descriptions of the 2D Graphics Engine registers, refer to the
Laguna VisualMedial Accelerators Family — CL-GD546X Volume | (Hardware Reference Man-
ual, Second Edition, September 1996) for register information.

Most graphics registers, when written in the CL-GD546X, are posted through the 2D engine com-
mand queue, which has an effective depth of 25-dword entries.

In PCI systems, checking the queue depth is not required since the bus architecture supports
retries and waits while the queue is full.

Immediate registers are not posted through the queue and checking QFREE is never required.
These registers are typically device initialization registers that are not used during a BitBLT oper-
ation. Each register write consumes one, two, or three entries in the queue. Each write uses one
entry per 16 bits (word), plus one extra entry if it is a command.

BLTEXT registers consume three entries: two for the X/Y, and one for the implied command.
Immediate registers bypass the queuing mechanism and consume no entries. The programmer
does not have to check that a BitBLT operation is completed before programming the next opera-
tion. This is due to the queueing mechanism and the double buffering of internal registers in the
CL-GD546X. The queue allows host and BitBLT operations to execute in parallel, increasing the
overall system throughput.

Typically, a register is written as a 32-bit dword or portions of it are written as 16-bit WORDs. The
programmer can choose to write 16-bit halves of the register when it is the only portion of an X/Y
address or extent that is changing between operations in an inner loop. This is a convenient opti-
mization for text operations when the Y extent remains constant for a long sequence of operations.

In addition to triggering the operation, BLTEXT registers set the extents of the BitBLT. Writing to
one 16-bit half of the BLTEXT register sets an X or Y value. Writing to the other 16-bit half sets the
corresponding Y or X value and starts the BLT operation. Be careful to write these register halves
in the correct order so that the BLT is started by the second write, not the first. The register descrip-
tions for these registers indicate which half of the register is the triggering write. BLTEXT registers
are provided for initiation of the operation on X write (_XEX) or on the Y write (_EX).

Prior to each BitBLT operation, several registers are set up. The four most important registers are
BITMASK, BLTDEF, LNCNTL, and DRAWDEF. The bit assignments of the BLTDEF, LNCNTL, and
DRAWDEF registers appear in Table 2-1. Incorrect setup of these registers accounts for a large
share of the problems that a programmer encounters. After these four registers are set up, the
OP_opRDRAM Pointer registers are set up to point to source and destination operands and result
locations. Following initialization of the Control registers, a ‘command’ BLTEXT register is written.
It contains the destination X and Y extents and causes the desired operation to proceed.

September 1996 2-8 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

The first register to consider when setting up for a BitBLT is the BITMASK register. It should be
set to FFFFFFFFh to enable writing to all bits. Each bit in the BITMASK enables (1) or masks (0)
the write to the corresponding bit that it aligns with during the memory write. All 32 bits in the BIT-
MASK register are used, regardless of the width of pixels in the frame buffer. In 8 bits-per-pixel
frame buffers, the 8-bit BITMASK must appear four times throughout the entire 32-bit register. In
16-bit systems, it appears twice. In 32-bit systems, one copy of the mask fills the 32-bit register.
In 24 bits-per-pixel systems, BITMASK cycles in and out of alignment if any value other than
FFFFFFFFh is used. This is because BITMASK is effectively dword aligned. Many drivers can be
written to set BITMASK to FFFFFFFFh at initialization and do not need to be changed again.

The next register to set is the BLTDEF register. It has fields that specify the fetching properties of
the Operand Fetch Units. The OP1 and OP2 fields are set to fetch data from the frame buffer, the
host, or SRAM. Additionally, the fetch field can be set up for a ‘fill’ fetch, which always supplies the
background color. Color or monochrome source data and pattern fetching is selected in the OP1
and OP2 fields. The OPO fetch is selected from either SRAM or the frame buffer. The result of the
operation is then selected by the RES field and can be set to the frame buffer, host, or SRAM.
SRAM destinations are SRAMO, SRAM1, SRAM2, or SRAM1 and SRAM2 combined. Next, the Y
direction for BitBLTs is set to either up the screen (decreasing Y) or down the screen (increasing
Y). Finally, the BD_Same field should be set or cleared.

Setting BD_Same (bit 11) causes OP1 and OP2 data to be fetched based solely on OP2 operand
pointers. OP1 X registers need to be set to the same value as OP2 X registers in this mode. When
OP1 and OP2 use the same data, it is a useful optimization for reducing the amount of data that
needs to be fetched for an operation. For example, host-to-frame-buffer transparent text, with iden-
tical font and transparency masks using OP1 for monochrome-to-color expansion and OP2 for
transparency control, is an excellent use of BD_Same.

Overlapping BitBLTs that move down (increasing Y) the screen are performed with BLTDEF.YDIR
set to up, and with the source and destination pointers anchored to the lower left corners of the
rectangles. Overlapping BitBLTs that move up the screen are performed with BLTDEF.YDIR set to
down, and with the source and destination pointers anchored to the upper left corners. In addition,
the case of a purely horizontal, left to right BitBLT must be considered. Unless it is broken up into
strips or cached through an intermediate buffer by software, this BitBLT results in vertical stripes.

The next register to set up is the DRAWDEF register. The three operand raster operation is set in
the ROP field. Transparency (using OP2) is enabled by setting the transparency switch on and the
type. The compare operation (foreground or background) is selected by the transparency opera-
tion field. The Pixel Tag field is used in 9-bit RDRAM systems to control the setting or clearing of
the ninth bit during the BitBLT. If set, The ninth bit indicates to the back-end that the associated
pixel is video and must be interpreted using the video format and depth fields. Finally, the mono-
chrome saturate fields must be set or cleared. If OP1 and/or OP2 are fetching monochrome data
and saturate is on, then ones are converted to all ones (FF, FFFF, FFFFFFFF) and zeroes are
expanded to zeroes. If saturate is off, then monochrome data is converted to the foreground and
background colors.

To perform a logical ternary raster operation (ROP), the DRAWDEF ROP field must be set to the
8-bit ROP code. This is provided by the application or some layer of software above the driver. The
ROP code is computed by applying the desired logical operations to the operand constants, which
are OP0 = AAh, OP1 = CCh, and OP2 = FOh. For example, OP1 data is copied to the result using
code CCh, or OPO data is ANDed to OP1 data using a ROP code of (OP0 and OP1) = (AAh and
CCh) = 88h. A more complex example is a ‘patterned stencil BitBLT’ in which a pattern is copied
to a rectangular region in the frame buffer through a monochrome stencil bitmap. Let the zeroes

Copyright 1996 — Cirrus Logic Inc. 2-9 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

in the stencil represent the stencil holes through which the pattern is applied, and let ones repre-
sent solid areas. This prevents the underlying data in the frame buffer from being changed. Make
OPO the existing destination pixel, make OP1 the monochrome stencil source, and make OP2 the
pattern source. Where OPL1 is a one, the result bit is taken from OP0. Where OP1 is a zero, the
result is taken from OP2. In this example, the ROP code is computed as listed below.

oP1 CcC 11001100 ones sel ect OPO,
zeroes sel ect OP2

OPO AA 10101010
oP2 FO 11110000
RES B8 10111000

ROP code B8 is represented in reverse polish Boolean as PSDPxax and in algebraic notation as
PATASRC&(DST”PAT), where P = PAT = OP2, S = SRC = OP1, and D = DST = OPO.

The DRAWDEF and BLTDEF registers are written as a single 32-bit operation or as two 16-bit
operations. Typically, the programmer composes the contents of a DRAWBLTDEF register setting
for a given operation by combining various bitmap macros at compile time, or by masking the reg-
isters at run time to specify the BitBLT operation. Then, the programmer moves the 32-bit dword
to the hardware. Some optimization of the driver is realized by leaving the DRAWDEF and BLT-
DEF registers in a standard configuration at the end of every operation. This allows subsequent
operations to skip setting these registers. The most common setting for these registers is often
frame-buffer-to-frame-buffer source copy using color source and destination data types.

If the BitBLT is doing monochrome-to-color conversion, set the Foreground and Background Color
registers must be set. In 8 and 16 bits-per-pixel, the colors are replicated throughout the register.
An 8-bit-per-pixel color of 37h is loaded as 37373737h, while a 16-bit-per-pixel color of 6A7Fh is
loaded as 6A7F6AT7Fh.

The LNCNTL register, for normal BitBLTs, should have the auto field set to ‘0’, and the chain field
set to off. If the frame buffer contains mixed-pixel formats, set the graphics pixel format field. The
LNCNTL register is discussed in detail in the Chapter 4, “Video Programming”.

After BITMASK, BLTDEF, DRAWDEF, and LNCNTL registers are set up, the operand pointers for
fetching and storing the data need to be set up. If OP1 or OP2 are fetching monochrome data from
the frame buffer, then OP{1|2}.opoMRDRAM is used to point to the source data in the frame buffer.
The Y portion (upper 16 bits) of the register contains the line-number index and the X portion
(lower 16 bits) contains the bit index to the monochrome data. For instance, a monochrome glyph
cached at byte 3 on the second line has a'Y value of ‘1’ and a X value of ‘24’ loaded into the OP
pointer. If monochrome data is fetched from SRAM, then the OP{1|2} opMSRAM pointers should
point to the bit offset in the appropriate SRAM. Monochrome data, fetched from SRAM, wraps
around at the end of SRAM and continues fetching at the beginning. If monochrome data is
fetched from the host, the phase alignment of the data (within the dwords fetched from the host),
is indicated by the value programmed into the OP{1|2} opMRDRAM register. For this operation,
these registers serve the secondary purpose of phase control, which is not clearly indicated by
their name.

September 1996 2-10 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.2.3

Color data from the frame buffer is pointed to by the OP{0|1]|2}_opRDRAM registers. Color data
from the SRAM is pointed to by the OP{0|1|2}_opSRAM registers. This data is cyclic in that at the
end of SRAM, the internal pointers cycle to the beginning of SRAM. Color data from the host is
phase aligned by using the OP{1|2}_opRDRAM registers in a manner similar to the monochrome
case. The registers point to the byte alignment (0, 1, 2, 3) within the dwords loaded from the host.

The OPO_opRDRAM register points to the result X/Y location in the frame buffer. The
OPO_opRDRAM.pt.X register points to the result offset in SRAM. OP0_opRDRAM.pt.X indexes
into the particular SRAM cache selected in the BLTDEF result field.

Operand Pointer registers do not read back with the same values that are written to them. The
programmer must not make the assumption that they do. Color RDRAM pointers are byte con-
verted on write and read back as byte offsets. Monochrome pointers (MRDRAM and MSRAM)
read back as monochrome pointers. MRDRAM pointers are interpreted by the hardware as byte
pointers for color operands and as bit pointers for monochrome operands. The Y part of pointers
undergoes no conversion (reference the Graphics Accelerator Registers Chapter 10 for a detailed
description).

Pattern data is always 8 lines by 8 pixels and anchored to the frame buffer (0,0) location. If OP1
and/or OP2 fetch patterned data, then the PATOFF register is set to align the pattern tile to the
upper-left hand corner of the frame buffer. PATOFF contains X and Y fields that index into the pat-
tern and define the point of alignment. Once a pattern alignment is set, all subsequent pattern Bit-
BLTs are mutually aligned within the frame buffer. PATOFF applies to OP1 and OP2 concurrently.
If two patterns are used and the programmer needs different relative alignments, then one pattern
must be rotated in software prior to caching.

Monochrome-to-Color Conversion BitBLTs

Monochrome bitmaps consisting of one bit for each pixel are converted to foreground and back-
ground colors, or to all zeroes and all ones (black and white) during a monochrome BitBLT oper-
ation. Strings of ones and zeroes are fed into the graphics accelerator 2D engine and are output
respectively as foreground color and background color. Source (OP1) or Pattern (OP2) operands
fetch and convert monochrome bit streams to color. Typical use of monochrome-to-color conver-
sion transforms font maps to characters on the screen or for painting two-color hatched brushes.

The saturate fields in the DRAWDEF register are used to select monochrome-to-color conversion
(saturate off), or to select monochrome conversion to all ones and all zeroes (saturate on). Fore-
ground and background colors for color converted bitmaps are selected by placing the appropriate
values in the OP_opFGCOLOR and OP_opBGCOLOR registers and turning DRAWDEF.SATn off.
Color values in the dword FGCOLOR and BGCOLOR registers are expanded to fill the full 32 bits
in 8- and 16-bit cases. In a 24-bits-per-pixel case, the color value is loaded into the lower 24 bits
of the register.

Monochrome-to-color conversion BitBLTs are sourced from the host, frame buffer or SRAM, and
can use host, frame buffer, or SRAM as the result. Monochrome BitBLTs are combined with trans-
parent BitBLTs to produce foreground only fonts. Monochrome data can be stretched in a two-step
operation by first performing a monochrome saturate BitBLT, and then performing a replicate
stretch on the result. Monochrome data is used as pattern source data, making for very efficient
storage of two-color brushes or hatching patterns.

Copyright 1996 — Cirrus Logic Inc. 2-11 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

224

2.2.5

Transparent BitBLTs

Both monochrome and color bitmaps are used as transparent masks. The OP2 operand fetch unit
fetches data and performs the transparent compare operation. It enables or masks write opera-
tions to the frame buffer based on the compare result.

Monochrome transparency operations are performed by enabling transparency and setting the
transparent operation to foreground or background in DRAWDEF. Zero (background) bits in the
monochrome mask suppress writes to their associated pixels in the frame buffer. Ones enable
writes to the frame buffer, if monochrome foreground transparency is selected. If background
transparency is selected, ones in the monochrome mask suppress writes to their associated pix-
els in the frame buffer and zeroes enable writes. The FGCOLOR and BGCOLOR registers do not
need to be set as a part of monochrome transparency setup.

Color transparency is implemented by pointing OP2 to a color region, setting BGCOLOR to the
transparent compare color, and selecting equal or not equal as the transparent compare opera-
tion. A typical operation is chroma keying or blue-screening where picture is rendered on top of a
constant colored background. The constant background color is put into the BGCOLOR register
as the compare color. The operation is then set to equal. If an OP2_Copy ROP (OFOh, PATCOPY)
is selected and transparency is enabled, then the picture on the ‘blue-screen’ background copies
to the destination region of the screen while the background is untouched. This is useful for ani-
mation provided that a save-under and restore operation are associated with the transparent Bit-
BLT.

Operand fetch unit one fetches data written to the frame buffer. Operand fetch unit two selects data
from a distinctly different monochrome transparency mask located elsewhere in off-screen mem-
ory. This method is used to mask video or graphics data into an arbitrarily shaped region. Mono-
chrome bitmasking is used to implement occlusion of normally rectangular video regions by
associating an equal-sized bitmask with the region, and enabling or disabling writes to the
occluded video region by careful manipulation of the transparency bitmask.

Transparent BitBLTs are combined with color or monochrome patterned data and are used with
any of the 256 available ROPs. Align off-screen transparent font caches with memory to minimize
tile boundary crossings to minimize RDRAM page breaks and to optimize fetching performance.

Pattern BitBLTs

Patterns are used when the source for a rectangular block of pixels repeats in X and Y. This is pro-
duced by having a small source rectangle that is used repetitively to fill up the destination. When
the left end of the pattern is reached during the BitBLT to the destination, the source pointer is
reset to the right end of the pattern. When the bottom of the pattern is reached, the source pointer
is reset to the top of the pattern. Patterns are 8 x 8 square pixel regions that are tiled onto the
screen. The upper-left corner of the pattern tile is aligned to the upper-left corner (0,0) of the frame
buffer. The alignment is adjusted to any point within the tile. This is done by setting the X, Y values
in the PATOFF register. Pattern data can be monochrome or color sourced from the host.

Align dword for patterns caches stored in off-screen frame buffer memory. Pattern loading from
the host is simplified by using the bpp independent MBitBLT, which is discussed later in this sec-
tion.

September 1996 2-12 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.2.6

Patterns are not stored in rectangular format in the frame buffer, they are stored linearly. A mono-
chrome (1 bpp) pattern is stored in a single qword (64 bits). An 8-bpp color pattern is stored in 64
sequential bytes on a single line. A 16-bpp color pattern is stored in 128 sequential bytes, also on
a single line. 24-bpp and 32-bpp color patterns are stored on two adjacent lines with half the pat-
tern on each line. The even line contains the top half of the pattern. The next odd line contains the
bottom half. Monochrome pattern maps are converted to foreground and background color. Oth-
erwise they are saturated to black and white depending on the settings of the DRAWDEF. Saturate
fields.

Both operand one (OP1) and operand two (OP2) can fetch pattern data from any source. OP2
can additionally perform transparent compare operations on pattern data.

For optimal performance, patterns should be tile-aligned. Crossing tile boundaries puts a penalty
on memory performance by causing RDRAM page breaks. The architecture allows any pattern to
fit within a single tile and the programmer, striving for optimal performance, is encouraged to take
advantage of this feature. Monochrome, eight and sixteen bits-per-pixel patterns fit in a single
SRAM cache, whereas 24- and 32-bits-per-pixel patterns are fetched multiple times yielding lower
performance due to repeated pattern fetching.

Host BitBLTs

The BitBLT engine can source data from the host and write data to the host. Once a host BitBLT
is initiated, host data must be written or read under program control, since it is not a bus master
device.

Host BitBLTs are phase-aligned so that the fetched or stored data is dword-aligned. Since aligned
X86-dword fetches are executed more quickly than non-aligned fetches, alignment yields higher
performance. Given a non-aligned pointer to data on the host, the programmer can choose the
next lower dword aligned address and use the OP{0|1|2} _opMRDRAM registers to select the byte
offset (phase) within the dword where the first pixel begins. The OP{1|2} opMRDRAM registers
are used for host sourced BitBLTs to control the phase alignment of data within the dwords written
to HOSTDATA, following the BLTEXT. The programmer should set OP{1|2}_opMRDRAM.pt.X to
(0, 1, 2, 3) to select the proper phase of alignment for host-sourced BitBLTs. Host-destination Bit-
BLTs operate in a similar manner, giving the programmer the ability to select the phase within
gwords in the frame buffer. The number of host destination dwords is always a multiple of two. The
CL-GD546X only supplies qwords for host destination BitBLTs. The programmer should set
OPO_opMRDRAM.pt.X to (0, 1, 2, 3) to select the proper phase alignment for host destination Bit-
BLTs. Phase-aligning host BitBLTs is strictly a performance enhancement. If it is not chosen, exer-
cise caution and set the phase pointers to zero. This is important since expected data may not be
aligned, and the number of dwords to supply may be calculated incorrectly.

Copyright 1996 — Cirrus Logic Inc. 2-13 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.2.7

BitBLTs to and from the host are performed by setting up the OP pointers, the phasing pointers
described earlier, the Control registers (BLTDEF, DRAWDEF), and commanding the BitBLT by the
BLTEXT registers. Care must be taken in properly calculating the number of HOSTDATA dwords
to read or write. The general formula for the number of HOSTDATA_dword writes is:

H x %N X BytesPerPler4+ 3 + Phasel nByteag Equation 2-1

The general formula for the number of HOSTDATA_dword reads is:

H x W x BytesPerPixel + 7 + Phasel nByteg
O

8 il Equation 2-2
where
H isthe height in rows (scanlines) of the BitBLT.
W isthewidth in pixels of each row and Bytes PerPixel = 1 (8 bpp), 2 (16 bpp), 3 (24 bpp), and 4 (32 bpp).

In 32-bpp modes only, the above formula can be simplified to H x W.

The RDQUEUE field in the STATUS register is a ‘1’, if data is available for the host to read. The
Swizzle bit in the CONTROL register is set to reverse the bit order within bytes during Host Bit-
BLTs. This is useful for reversing the direction of font maps that are provided ‘backwards’ to the
software. Be careful not to upset the state of other bits in the CONTROL register when program-
ming the Swizzle bit.

Byte BitBLTs (MBIitBLTSs)

Byte BitBLTs are available at all pixel depths to simplify off-screen memory management, making
large parts of typical drivers bit-per-pixel independent. Byte BitBLTs are also called monochrome
BitBLTs or MBIitBLTs, although they are not monochrome BitBLTs. Without MBItBLTSs, the require-
ment to dword-align patterns in off-screen memory (while in packed 24-bpp formats); would be
problematic since not all pixel X pointers point to dword-aligned boundaries.

To perform a MBIitBLT, set up the BLTDEF and DRAWDEF registers as usual. Next, set up the
OP{0|1|2}_opMRDRAM pointers with byte offsets. Finally, command the BitBLT extents with MBL-
TEXT registers. The MONOQW register must be set to the number of gwords that encompass the
X extent of monochrome data (MONOQW = (Number_of Bytes + 8) / 8).

September 1996 2-14 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.3

2.4

Tips and Tricks

This section helps the programmer avoid common pitfalls and increase performance while pro-
gramming the CL-GD546X.

. Align patterns on tile boundaries for optimal memory bandwidth use. Patterns must be aligned on word
boundaries.

. Minimize the number of tile boundaries crossed in a given operation for optimal memory bandwidth use.

. Many software errors can be traced to improper setup of four registers: BITMASK, BLTDEF, DRAWDEF,
and LNCNTL. These registers should be set up carefully.

. In some cases it may be optimal to verify that the write queue contains sufficient entries by reading
QFREE prior to a macro operation. On the PCI bus, this only reduces retries when other devices are
contending for the bus.

« Where multiple registers contain the same information, be certain that the Graphics Accelerator and Dis-
play Controller register settings match for any given mode.

« Operations fetching from SRAM are faster than operations fetching from RDRAM. If patterns are used
several times in succession, cache them in SRAM.

. Be careful to feed HOSTDATA the proper number of dwords when doing a host-sourced BitBLT. Also,
when doing a host-destination BitBLT (refer to Section 2.2.6), be careful to read the proper number of
gwords.

. Set OP(1,2) opRDRAM.pt.X to (0, 1, 2, 3) to select the proper phase of alignment for host-sourced Bit-
BLTs.

. Set OP0O_opRDRAM.pt.X to (0, 1, 2,..., 7) to select the proper phase alignment for host-destination Bit-
BLTs and for SRAM result BitBLTSs.

. SRAM pointers that are not gword aligned causes the other bytes in the containing SRAM gword to be
written.

BitBLT Programming Examples

Several BitBLT programming examples are provided in the following sections. These examples
contain the name of the register to be written, followed by the value to be written. Values are in
decimal or hex. Register names follow the coding practice found in the LGREGS.H file and the
register chapters of this manual.

Reading the Programming Examples

When reading or using the BitBLT programming examples, follow the instructions at the beginning
of this chapter. HOSTDATA indicate data being written to the HOSTDATA port from the system
CPU during a host to frame buffer or SRAM BitBLT. Following the BLTEXT command in these
cases, HOSTDATA lines are provided with the proper number of dwords. One or more dwords are
appended to a single HOSTDATA line. All HOSTDATA writes are 32-bit writes regardless of the
numeric format in the example. Another special case is READHOSTDATA followed by the size
(byte, word, dword) to be read back from a frame buffer or SRAM during the host BitBLT.

Copyright 1996 — Cirrus Logic Inc. 2-15 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.1 Software Cursor Programming Example

The CL-GD546X supports a 64 x 64 bit-mapped hardware cursor. The following example is for
illustrative purposes only. It provides a method of software implementation for generating cursor-
like objects of arbitrary size, color, and transparency properties.

A monochrome transparency mask is combined with a color cursor map. The color cursor is in the
shape of a picture frame. The monochrome transparency mask is the frame’s interior region. This
type of operation could be used in a game for a target sighting device. The cursor color and trans-
parency maps are loaded into off screen memory. The cursor area is then saved to off-screen
memory and the cursor is painted. The off-screen save area is copied back to the cursor location.
The cursor is moved and the cycle repeats. The example below shows the first two cycles of mov-
ing the cursor diagonally from upper left towards lower right. The delta X and delta Y movements
are set to ‘1’. Redundant register writes are eliminated from the example.

load 16 pixel x 16 line color cursor map fromhost to franme buffer
Bl TMASK OXFFFFFFFF # wite mask -> all enable
BLTDEF 0x1020 # opl_is_host, res_is_rdram
DRAVDEF 0x00CC # rop_opl_copy
CONTROL 0x0400 # Swi zzl e on (Reverses Bit O der

with in HOSTDATA BYTES). Note that

this is 8 Bits-per-pixel
OPO_opRDRAM pt . X O # BLT -> 0,256 of f-screen nenory
OPO_OpRDRAM pt . Y 256
OP1_opRDRAM pt . X 0 # Set Host Data Transfer phase of O
BLTEXT_EX. pt. X 16 # 16 pixel by 16 line color map
BLTEXT_EX. pt.Y 16
HOSTDATA 0x52525252 0x52525252 OxAAAAAAAA OXAAAAAAAA # line 1
HOSTDATA 0x52525252 0x52525252 OxAAAAAAAA OXAAAAAAAA # |ine 2
HOSTDATA 0x00005252 0x00000000 0x00000000 OxAAAAQ000 # line 3
HOSTDATA 0x00005252 0x00000000 0x00000000 OxAAAAQ000 # line 4
HOSTDATA 0x00005252 0x00000000 0x00000000 OXAAAAQ000 # line 5
HOSTDATA 0x00005252 0x00000000 0x00000000 OxAAAAQ000 # line 6
HOSTDATA 0x00005252 0x00000000 0x00000000 OXAAAAQ000 # line 7
HOSTDATA 0x00005252 0x00000000 0x00000000 OxAAAAQ000 # line 8
HOSTDATA 0x00004444 0x00000000 0x00000000 OxFFFFOO000 # line 9
HOSTDATA 0x00004444 0x00000000 0x00000000 OxFFFFO000 # 10
HOSTDATA 0x00004444 0x00000000 0x00000000 OxFFFFO000 # 11
HOSTDATA 0x00004444 0x00000000 0x00000000 OxFFFFO000 # 12
HOSTDATA 0x00004444 0x00000000 0x00000000 OxFFFFO000 # 13
HOSTDATA 0x00004444 0x00000000 0x00000000 OxFFFFO000 # 14
HOSTDATA 0x44444444 0x44444444 OXFFFFFFFF OXFFFFFFFF # 15
HOSTDATA 0x44444444 0x44444444 OxFFFFFFFF OxFFFFFFFF # 16
#

load a 16 bit x 16 line nono transparency map fromhost to frame # buffer

September 1996

2-16

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

OPO_OpRDRAM pt . X 16

OPO_opRDRAM pt . Y 256
BLTEXT_EX. pt. X 2
BLTEXT _EX. pt.Y 16
HOSTDATA OxFFFF
HOSTDATA OXFFFF
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA 0x03c0
HOSTDATA OxFFFF
HOSTDATA OXFFFF

2D PROGRAMMER'S GUIDE

BLT->16, 256 BLT to off-screen nenory

mask width (in bytes)
mask length (in |lines)
line
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
l'ine
line 16

© 0O N O Ol B WN P

el e
N P O

S xxpREEEERE

S x s p RERREEE

H O OF OH OH R HE HOH O H HOH OH R
=
IS

|

Setup FG & BG col or for transparency engine.

point to nono mask
OP2_opnRDRAM pt . X 128
OP2_opnmRDRAM pt . Y 256
BLT X extent
BLTEXT_EX. pt. X

is invariant

#begi n cursor novenent
#SaveUnder fromfirst
BLTDEF

DRAVDEF

OPO_opRDRAM pt . X 24
OPO0_opRDRAM pt . Y 256
OP1_opRDRAM pt. X O
OP1_opRDRAM pt.Y O
BLTEXT_EX. pt.Y

| oop
| ocati on.

#Pai nt Cursor.
BLTDEF

DRAVDEF
OPO_opRDRAM pt . X O
OPO_opRDRAM pt. Y O

Copyright 1996 — Cirrus Logic Inc.

i n exampl e.

16

0x1111

0x00CC

16

0x1015
0x01CC

2-17 September 1996

2D PROGRAMMER'S GUIDE

OP1_opRDRAM pt. X 0
OP1_opRDRAM pt .Y 256
BLTEXT_EX pt.Y

CL-GD546X Software Technical Reference Manual

16

#Restore from SaveUnder to this |ocation.

BLTDEF

DRAVDEF

OP1_opRDRAM pt . X 24
OP1_opRDRAM pt . Y 256
BLTEXT_EX pt.Y

#SaveUnder from next | ocation.
OPO_opRDRAM pt . X 24
OPO_OopRDRAM pt . Y 256
OP1_opRDRAM pt . X 1
OP1_opRDRAM pt. Y 1

BLTEXT_EX. pt.Y

#Pai nt Cursor to next |ocation.
BLTDEF

DRAVDEF

OPO_opRDRAM pt . X 1

OPO_opRDRAM pt . Y 1

OP1_opRDRAM pt. X O

OP1_opRDRAM pt .Y 256

BLTEXT _EX. pt.Y

#etc. ..

September 1996

0x1111
0x00CC

16

16

0x1015
0x01CC

16

2-18 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.2 Font Load Programming Example

This example illustrates a simple move of a block of data from the host to the frame buffer. The
host is caching a font (typically in off-screen memory) to use in a subsequent text BitBLT. The
monochrome bitmap is treated as color data and moved to the frame buffer. Make sure that the
proper number of dwords are written to the HOSTDATA register following the BLTEXT command.
The number of dwords is the number of lines times the number of dwords required to contain all
the data on a single line. For instance, a font that fills 5 bytes in width and 21 lines in height
requires 2 x 21 = 42 dwords, since 5 bytes consume all of one and part of a second dword. For
more information on calculating the number of dwords, reference the general formula in
Section 2.2.6 of this chapter.

| oad 8x8 nmono font for letter “E’" fromhost to frane buffer.

Bl TMASK OxFFFFFFFF # al | bi t senabl e

BLTDEF 0x1020 # opl_is_host, res_is_rdram

DRAVDEF 0x00CC # rop_opl_copy

OP0_opRDRAM pt . X 0 # BLT -> 0,0 cache font at 0,0

OPO_OpRDRAM pt . Y 0

OP1_opRDRAM pt . X 0 # Host Data phase of 0 (Use Byte at
Low Address as First Byte)

BLTEXT_EX. pt . X 1

BLTEXT_EX. pt.Y 8

HOSTDATA 0x00000000

HOSTDATA 0x0000003E

HOSTDATA 0x00000002

HOSTDATA 0x0000001E

HOSTDATA 0x00000002

HOSTDATA 0x00000002

HOSTDATA 0x0000007E

HOSTDATA 0x00000000

Copyright 1996 — Cirrus Logic Inc. 2-19 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.3

24.4

Text BitBLT, Foreground/Background Color Programming Example

The following text BitBLT example writes a character to the screen from a monochrome bitmap
with ones appearing as foreground color, and zeroes appearing as background color. The bitmap
is assumed to be in the frame buffer. Fill out the foreground and background colors in the Fore-
ground Color and Background Color registers if they are 8 or 16 bpp (at 8 bpp, the color is
repeated four times).

do a nmono to col or foreground/ background BLT nono font using the
mono “E” font fromprior exanple.

OP_OPBGCOLOR 0x22222222 # |oad colors

OP_OPFGCOLOR 0x00000000

BLTDEF 0x1050 # res = RDRAM opl/src = fb nono
DRAVDEF 0x00CC # rop = src copy

OP1_OPmRDRAM pt . X 0x0

OP1_OPnRDRAM pt . Y 0x0

OP0_OPRDRAM pt . X 0x1

OPO_OPRDRAM pt . Y 0x0

BLTEXT _EX 0x00080008 # 8 x 8 character

Text BitBLT, Monochrome Font from Host Programming Example

This example illustrates how to write a character to the screen with the font cached on the host.
This method of rendering characters can be simpler and faster than caching fonts in the frame
buffer in some systems. If the monochrome font bitmap is provided by the function that is request-
ing the font to be rendered, then skipping the cache to off-screen eliminates unnecessary memory
accesses.

draw 8x8 nmono font for letter “h” fromhost to framebuffer.

Bl TMASK OxFFFFFFFF # al |l bitsenabl e
BLTDEF 0x1060 # opl_is_host_nono,
res_is_rdram

DRAVDEF 0x00CC # rop_opl_copy
OPO_opRDRAM pt . X 0 # BLT -> 0,0
OPO_OpRDRAM pt . Y 0

OP1_opMRDRAM pt . X 0 # Set Host Phase of zero
OP_OPBGCOLOR OXAAAAAAAA # Set FG & BG colors
OP_CPFGCOLOR 0x55555555

CONTRCL 0x0400 # Swi zzl e on
BLTEXT_EX pt. X 8 # Command BLTer to take data
BLTEXT_EX. pt.Y 8

HOSTDATA 0x00000000

HOSTDATA 0x00000040

HOSTDATA 0x00000040

HOSTDATA 0x00000040

HOSTDATA 0x00000078

September 1996 2-20 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

HOSTDATA 0x00000048
HOSTDATA 0x00000048
HOSTDATA 0x00000000

draw 8x8 nono font for transparent letter “h” fromhost to frame

buffer.
BLTDEF 0x1866 # opl_is_host_nono,
op2_i s_host_nono,
res_is_rdram opl = op2
DRAVDEF 0ox01cCC # rop_opl_copy, xpar
OPO_opRDRAM pt . X 8 # BLT -> 0,0
OPO_OopRDRAM pt . Y 8
OP2_opMRDRAM pt . X 0 # Set Host Phase of zero
OP1_opMRDRAM pt. X 0
BLTEXT_EX pt. X 8 # Command BLTer to take data
BLTEXT_EX. pt.Y 8
HOSTDATA 0x00000000
HOSTDATA 0x00000040
HOSTDATA 0x00000040
HOSTDATA 0x00000040
HOSTDATA 0x00000078
HOSTDATA 0x00000048
HOSTDATA 0x00000048
HOSTDATA 0x00000000

Copyright 1996 — Cirrus Logic Inc. 2-21 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.5

Text BitBLT, Transparent Background Programming Example

This example places an 8 x 8 character on the screen. The character is foreground color, and the
background is transparent. Both the OP1 (SRC) and the OP2 (PAT) are pointed to the same font.
While OP1 performs the foreground monochrome-to-color conversion, OP2 performs the trans-
parent decision making.

| oad 8x8 nmono font for letter “h” from host to franebuffer.

Bl TMASK OxFFFFFFFF # al | bitsenabl e
BLTDEF 0x1020 # opl_is_host, res_is_rdram
DRAVDEF 0x00CC # rop_opl_copy
OP1_opRDRAM pt . X 0 # host phase is O
OPO_opRDRAM pt . X 0 # BLT -> 0,0
OPO_OopRDRAM pt. Y O
BLTEXT _EX. pt. X 1
BLTEXT_EX. pt.Y 8
HOSTDATA 0x00000000
HOSTDATA 0x0000003E
HOSTDATA 0x00000002
HOSTDATA 0x0000001E
HOSTDATA 0x00000002
HOSTDATA 0x00000002
HOSTDATA 0x0000007E
HOSTDATA 0x00000000
o
do a transparent nono to color BLT using the nono “E” font.
FGC! = BGC for nono transparency to work.
OP_OPBGCOLOR 0x00000000
OP_OPFGCOLOR 0x01010101
BLTDEF 0x1055 # res = RDRAM opl =
rdram nono,
op2 = rdram_nono
DRAVDEF 0x01cc # src copy transp_op = “="
OP2_OPnRDRAM pt . X 0x0 # poi nt to nono mask (sane as

font)
OP2_OPnRDRAM pt . Y 0x0

OP1_OPrmRDRAM pt . X 0x0 # point to font (same as nono
mask)

OP1_OPrRDRAM pt . Y 0x0

OP0_OPRDRAM pt . X 0x8 # point to destination
OPO_OPRDRAM pt .Y 0x8

BLTEXT_EX 0x00080008 # BLT it.

September 1996 2-22 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.6

Simple Source Copy Programming Example

The following example is of a BitBLT moving a rectangular region from one location in the frame
buffer to another location. Analyze the cases for overlapping BitBLTs. Overlapping BitBLTs that
move down (increasing Y) the screen are performed with BLTDEF.YDIR set to up, and with the
source and destination pointers anchored to the lower-left corners of the rectangles. Overlapping
BitBLTs that move up the screen are performed with BLTDEF.YDIR set to down, and with the
source and destination pointers anchored to the upper-left corners. Additionally, the programmer
should consider the case of a purely horizontal, left-to-right BitBLT that has the destination over-
lapping the source. This BitBLT results in vertical stripes unless it is broken up into vertical strips
of 128 bytes width or cached through an intermediate buffer.

BLTDEF 0x1111 # result=fb, opl=op2=color fb
DRAVDEF 0x00CC # rop = srccpy (opl copy)
OP1_opRDRAM pt . X 60 # source = 60,2

OP1_opRDRAM pt. Y 2

OP0_opRDRAM pt . X 88 # result = 88,8

OPO_OopRDRAM pt . Y 08

BLTEXT_EX. pt. X 8 # BLT size = 8x16

BLTEXT_EX pt.Y 16

The variation bel ow, of the exanple above, shows that OP2 is al so used for
“source’ copy BitBLTs. Do not confuse its ‘Pat’ name and assune it al ways
patterns. Both OP1 and OP2 can pattern, but the respective pattern bits nust be
set in the BLTDEF register. This is NOT a pattern BitBLT. It is a sinmple

rect angul ar nove.

BLTDEF 0x1111 # result=fb, opl=op2=color fb
DRAVDEF 0x00F0 # rop = patcpy (op2 copy)
OP2_opRDRAM pt . X 60 # source = 60, 2

OP2_opRDRAM pt . Y 2

OP0_opRDRAM pt . X 88 # result = 88,8

OPO_opRDRAM pt . Y 08

BLTEXT_EX pt. X 8 # BLT size = 8x16

BLTEXT_EX. pt.Y 16

Copyright 1996 — Cirrus Logic Inc. 2-23 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.7 Copy Frame Buffer-to-Host Programming Example

The following BitBLT example moves a rectangular block from the frame buffer into the host mem-
ory. To set up the BitBLT parameters, issue the BLTEXT command, and read the appropriate num-
ber of dwords from the HOSTDATA register. Make sure that the proper number of dwords are read
from the HOSTDATA register. The number of dwords is the number of lines times the number of
dwords required to contain all the data on a single line rounded up to the nearest gword. The 2D
engine only supplies data in 8-byte units to the host. For instance, a font that fills 5 bytes in width
and 21 lines in height requires 2 x 21 = 42 dwords, since 5 bytes consume all of one and part of
a second dword. For more information on how to calculate the number of dwords, reference the
general formula in Section 2.2.6.

read 4x4 region from 8bpp frane buffer

BLTDEF 0x2010 # opl_is_rdram res_is_host
DRAVDEF 0x00CC # rop_opl_copy
OP0_opRDRAM pt . X 0 # host phase is O
OP1_opRDRAM pt . X 100 # BLT source is 100, 100
OP1_opRDRAM pt. Y 100

BLTEXT_EX. pt. X 4

BLTEXT_EX pt.Y 4

read HOSTDATA DWORD # 4 pixels at 8 bpp first Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp first Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp second Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp second Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp third Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp third Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp fourth Y line
read HOSTDATA DWORD # 4 pixels at 8 bpp fourth Y line

September 1996 2-24 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

2.4.8 Color-Pattern BitBLT Programming Example

2D PROGRAMMER'S GUIDE

In this example, a color-pattern BitBLT tiles a rectangular region with a patterned source. OP
fetches the pattern from the frame buffer. The result is written to another frame buffer location.

All patterns are 8 x 8 pixels in dimension. Eight- and sixteen-bpp patterns are stored linearly in
adjacent memory locations, 24- and 32-bpp patterns are stored on two adjacent lines (same X,

Ys differ by one). Align pattern sources to gqword boundaries.

The pattern (0,0) is anchored to the frame buffer (0,0) and is moved with respect to this anchoring
by setting the PATOFF(X,Y) register. PATOFF(X,Y) values of (0,0) anchors the upper-left corner
of the pattern to (0,0) in the frame buffer. PATOFF(X,Y) values of (7,7) anchors the lower-right cor-
ner of the pattern to (0,0) in the frame buffer. Once a PATOFF value is selected, all subsequent
patterned BitBLTs align with each other regardless of their destination addresses.

Bl TMASK
OP_OPBGCOLOR

OP_OPFGCOLOR
OPO_opRDRAM pt . X
OP1_opRDRAM pt . X
OP2_opRDRAM pt . X
OPO_opSRAM
OP1_opSRAM
OP2_0opSRAM
CONTRCL

OXFFFFFFFF
0x00000000

OXFFFFFFFF
0x0

0x0

0x0

0x0

0x0

0x0

0x0000

enable all bits

make fg! =bg for any future
transparency to work

H

set all phases to O

Swizzle off

load 8x8 color pattern fromhost to frame buffer

BLTDEF
DRAVWDEF
OP1_opRDRAM pt . X

OPO_opRDRAM pt . X
al i gned

OPO_OopRDRAM pt . Y

BLTEXT_EX. pt. X
but BLTed

BLTEXT_EX pt.Y
HOSTDATA

HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA

Copyright 1996 — Cirrus Logic Inc.

0x1020
0x00CC
0x0
0x8

0x1 # NOTE ONLY

64

1
0x20202020 0x40202020

0x00000020h 40000000h
0x55550020h 40005555h
0x01550020h 40005503h
0x02550020h 40005504h
0x55550020h 40005555h

2-25

opl_is_host, res_is_rdram
rop_opl_copy

host source alignnent
#send result to 8,1 quad word

8/ 16 bpp Patterns can go
on ODD scanli nes

pattern size is al ways 8x8

linear into 64x1 in 8 bpp

F*

This 8 bpp pattern is
several concentric
col ored squares

H* H*

September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

HOSTDATA 0x00000020h 40000000h

HOSTDATA 0x40404020h 40404040h

BLTDEF 0x1090 # opl col or pat, op2 col or pat
DRAVDEF 0x00CC # rop = SRCCPY

PATOFF 0x0000 # no offset into pattern
OPO_opRDRAM pt . X 0x22 # destination is 22h, 22h
OPO_opRDRAM pt . Y 0x22

OP1_opRDRAM pt . X 0x8 # color pat at 8,1
OP1_opRDRAM pt . Y 0x1

BLTEXT_EX. pt . X 32 # BLT size is 32x32
BLTEXT_EX. pt.Y 32

2.4.9 Monochrome-to-Color BitBLT Programming Example

The following is an example of a monochrome-to-color BitBLT.

| oad 8x8 nobno pattern for letter “h” fromhost to frane buffer.

Bl TMASK OxFFFFFFFF # al | bitsenabl e

BLTDEF 0x1020 # opl_is_host, res_is_rdram
DRAVDEF 0x00cc # srccpy

CONTROL 0x0400 # Swi zzl e on
OP1_opRDRAM pt . X 0 # host source alignnent
OP0_opRDRAM pt . X 0 # BLT -> 0,0
OPO_opRDRAM pt . Y 0

BLTEXT _EX pt. X 8 # 8 byte BLT

BLTEXT_EX. pt.Y 1

HOSTDATA 0x40404000 # pattern data
HOSTDATA 0x00484878

CONTROL 0x0000 # Swi zzle off
=

do a nmono pattern to color fg/bg BLT using the pattern letter “h”

above.

OP_CPBGCOLOR OxXAAAAAAAA

OP_OPFGCOLOR 0x55555555

BLTDEF 0x10D0 # res=fb; opl=pat, nono,fb
DRAVDEF 0x00CC # src copy

PATOFF 0x0000

OP1_OPnRDRAM pt . X 0x0

OP1_OPnRDRAM pt . Y 0x0

OP0_OPRDRAM pt . X 0x1

OPO_OPRDRAM pt . Y 0x1

BLTEXT_EX. pt. X 0x0010

BLTEXT EX. pt.Y 0x0010

September 1996 2-26 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

2.4.10 Solid-Color-Fill Programming Example

2D PROGRAMMER'S GUIDE

This example fills a rectangular frame buffer region with the color specified in the BGCOLOR reg-

ister.

#Exanpl e of a color fill

OP_OPBGCOLOR
BLTDEF

DRAVWDEF
OPO_opRDRAM pt . X
OPO_opRDRAM pt . Y

BLTEXT_EX. pt. X
screen)

BLTEXT_EX. pt.Y

0x22222222

0x1070
0x00CC
0x0
0x0
1024

768

#Exanpl e of a bl ackness rop fill

BLTDEF

DRAVDEF
must be

OPO_opRDRAM pt . X
OPO_OpRDRAM pt .Y 0x2

BLTEXT_EX. pt. X
square

BLTEXT_EX. pt.Y

Copyright 1996 — Cirrus Logic Inc.

0x1101
0x0000

0x2

32

32

2-27

H OH OH O

* H® H* H*

load fill color
opl col or source
rop = srccpy
result at 0,0

size = 1024x768 (fill the

opl col or
rop = BLACKNESS, opl src

SRAM
result at 2,2

size = 32x32 (bl acken a

region)

September 1996

2D PROGRAMMER'S GUIDE

CL-GD546X Software Technical Reference Manual

2.4.11 Copy Host to SRAM to Frame Buffer Programming Example

This example loads a pattern from the host into the OP1 SRAM. This operation improves perfor-
mance by loading SRAM prior to a series of patterning operations. A pattern BitBLT from the frame
buffer loads SRAM during its operation. Subsequent BitBLTs are then performed from SRAM with-
out an explicit move into SRAM (note that if auto-BitBLTs are triggered, there is a possibility that
SRAM contents are overwritten during the auto-BitBLT. This can trigger between the first and sec-

ond BitBLTs, invalidating the data.)

| oad 8x8 col or

pattern from host to SRAM

BLTDEF 0x5020 # opl_is_host, res_is_sraml
DRAVDEF 0x00CC # rop_opl_copy
OP0_opRDRAM pt . X 0 # point to SRAM (SRAMD ptr is
used
for ALL result SRAMS)
OP1_opRDRAM pt. X 0x0 # Host Phase of zero
BLTEXT_EX. pt. X 64
BLTEXT EX. pt.Y 1
HOSTDATA 0x20202020 0x40202020
HOSTDATA 0x00000020 0x40000000
HOSTDATA 0x55550020 0x40005555
HOSTDATA 0x01550020 0x40005503
HOSTDATA 0x02550020 0x40005504
HOSTDATA 0x55550020 0x40005555
HOSTDATA 0x00000020 0x40000000
HOSTDATA 0x40404020 0x40404040
-
pattern the screen with the above color pattern from sraml
PATOFF 0x0000
BLTDEF 0x1080 # res RDRAM OP1 SRAM pat
DRAVDEF 0x00CC # SRC copy
OP1_opSRAM 0
OPO_opRDRAM pt . X 0x00
OPO_opRDRAM pt . Y 0x00
BLTEXT_EX. pt. X 0x20
BLTEXT EX. pt.Y 0x20

#BLT sranl to sran? (an unusual

operation but what the heck)

BLTDEF 0x6000 # res sran2, OP1 SRAM (NOTE
pat bit

not required)
DRAVWDEF 0x00CC # SRC copy
OP0_opRDRAM pt . X 0 # load at offset 0 in SRAMR
OP1_opSRAM 0 # load fromoffset 0 in SRAML
BLTEXT_EX. pt. X 64 # nmove 64 bytes (8bpp)

September 1996

2-28

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

BLTEXT_EX. pt.Y 1

=

pattern the screen with the sran2 color pattern

PATOFF 0000

BLTDEF 0x1008 # res RDRAM OP2 SRAM col or
pattern

DRAVDEF 0x00FO0 # PAT copy

OP2_0opSRAM 0

OPO_opRDRAM pt . X 0x20
OPO_OopRDRAM pt . Y 0x20
BLTEXT_EX. pt. X 0x20
BLTEXT_EX. pt.Y 0x20

Copyright 1996 — Cirrus Logic Inc. 2-29 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.12 Transparent-Monochrome-Cursor Programming Example

This example shows how to use two separate monochrome maps to implement a cursor. The
shape of the cursor is defined by one transparency mask and the two foreground and background
colors are defined by the other mask. The resulting cursor is a two-color picture frame shape with
a transparent center cutout. The monochrome masks are stored in the frame buffer with two host
BLTs, and the cursor object is rendered from them.

=
load 16 bit x 16l ine nono cursor map from host to frame buffer.
Bl TMASK OxFFFFFFFF # wite mask -> all enable
BLTDEF 0x1020 # opl_is_host, res_is_rdram
DRAVDEF 0x00CC # rop_opl_copy
OP0_opRDRAM pt . X 0 # BLT -> 0,256 of f-screen
nenory
OPO_OpRDRAM pt . Y 256
OP1_opRDRAM pt . X 0x0 # Host Phase of zero
CONTROL 0x0400 # Swi zzle on
BLTEXT_EX. pt. X 2 # cursor width in bytes
BLTEXT _EX. pt.Y 16 # cursor length in |ines
HOSTDATA 0x0000 # line 1
HOSTDATA 0x0100 #1ine2 1=For egound col or
X
HOSTDATA 0x0300 # line 3 0=Backgr ound
col or XX
HOSTDATA 0x0700 #1line 4 XXX
HOSTDATA 0x0f 00 #1lineb XXXX
HOSTDATA 0x1f 00 #1line 6 XXXXX
HOSTDATA 0x3f 00 #1line?7 XXXXXX
HOSTDATA 0x7f 00 # line 8 XXXXXXX
HOSTDATA oxffo1l # line 9 XXXHXXXKX
HOSTDATA Oxf f 03 # line 10 XXXXXXXXX
HOSTDATA oxff 07 # line 11 XXXHKXKAKXAKXK
HOSTDATA Oxf f Of # line 12 PO00.9.0.9.0.0.9.9.4
HOSTDATA Oxf f 1f # line 13 POO00.9.0.0.0.9.9.9.4
HOSTDATA Oxf f 3f # line 14 PO00.0.0.9.9.9.9.9.9.4
HOSTDATA Oxf f 7f # line 15 PO 00.9.0.9.0.0.9.9.9.9.4
HOSTDATA Oxffff # line 16 POO00.9.090.0.0.9.9.9.9.9.4
#
load a 16 bit x 16 [ine nmono transparency map from host to frame # buffer.
#
Bl TMASK OxFFFFFFFF # wite mask -> all enable
BLTDEF 0x1020 #
Src(Opl) =Host , Dest =FB(Fr ane

Buffer)

September 1996 2-30 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

DRAVDEF 0x00CC # ROP = Copy
OPO_opRDRAM pt . X 16 # BLT -> 16, 256 Bi t BLT to of f -
screen

menory

OPO_OopRDRAM pt . Y 256

CONTRCL 0x0500 # Swi zzle on, Fifo = 32
BLTEXT_EX. pt. X 2 # mask width (in bytes)
BLTEXT _EX. pt.Y 16 # mask length (in lines)
HOSTDATA Oxffff #line 1 XXOKXXXXXXXXXX
HOSTDATA Oxffff #1line 2 XXOXKIKKXXXK
HOSTDATA Oxffff #1line 3 XXOKXXKXXXXXXX
HOSTDATA Oxffff #1line 4 XXOXKKIKKXXX
HOSTDATA 0x0ffo0 # line 5 XXXX XXXX
HOSTDATA 0x0ffo0 #1line 6 XXXX XXXX
HOSTDATA 0x0ffo0 # line 7 XXXX XXXX
HOSTDATA 0x0ffo0 #1line 8 XXXX XXXX
HOSTDATA 0x0ffo0 # line 9 XXXX XXXX
HOSTDATA 0x0ffo0 # line 10 XXXX XXXX
HOSTDATA 0x0ffo0 # line 11 XXXX XXXX
HOSTDATA 0x0ffo0 # line 12 XXXX XXXX
HOSTDATA Oxffff # line 13 XXOXXXXXXKXXX
HOSTDATA Oxffff # 1line 14 XXOXKKIKKXXX
HOSTDATA Oxffff # line 15 XXXOXXXXXXXXXX
HOSTDATA Oxffff #1line 16 XXOXKKIKXKXXX
OP_OPFGCOLOR 0x55555555 # Pick a color. Foreground
col or = Pink.
OP_OPBGCOLOR 0x44444444 # Ditto. Background col or =
Yel | ow
#
DRAVDEF 0x83CC # Src(OP1) =Mbno_Sat,
Transp=on,
ROP=Src copy
BLTDEF 0x1055 #
Dest =FB, Sr c=Mono_FB, Pat =Mbno_FB
OP2_opnRDRAM pt . X 128 # pattern (bits, lines)
OP2_opnRDRAM pt . Y 256
OP1_opnmRDRAM pt . X 0 # source (bits, |ines)
OP1_opnRDRAM pt . Y 256
OPO_opRDRAM pt . X 32 # destination (pixels, |ines)
OPO_OopRDRAM pt . Y 64 # Cursor_X, Cursor_Y
BLTEXT _EX. pt. X 16
BLTEXT_EX. pt.Y 16 # Do it

Copyright 1996 — Cirrus Logic Inc. 2-31 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.13 Color-Transparency BitBLTs Programming Example

Use this example to put a striped-color rectangle on the screen. Use SRAM as an example, fol-
lowed by a color-pattern load. The color pattern is displayed and then BitBLTed on top of the orig-
inal rectangular area twice, once with source transparency and again with destination
transparency. These BitBLTs are useful for ‘blue-screen’ animation.

Set the Copy to happen from Start of SRAM

OPO_opSRAM 0x00

OP1_opSRAM 0x00

OP2_opSRAM 0x00

OP_opBGCOLOR 0x55555555 # transparent conpare col or
is 55h

OP1_opRDRAM pt . X 0x0 # Host Phase of zero
OP0_opRDRAM pt . X 0x00 # set SRAM of fset for result
=

Load the SRAM 1 from host

BLTDEF 0x5020 # opl_is_host, res_is_sram
DRAVDEF 0x00CC # rop_opl_copy

BLTEXT_EX. pt. X 128

BLTEXT_EX pt.Y 1

HOSTDATA contains many 55's to illustrate col or transparency in

subsequent

HOSTDATA Oxcbcb55c¢8 Oxcf 55cfcc

HOSTDATA 0xd3d355d0 0xd755d7d4

HOSTDATA Oxdbdb55d8 0xdf 55df dc

HOSTDATA 0Oxe3e355e0 0Oxe755e7e4

HOSTDATA 0x03035500 0x07550704

HOSTDATA 0x0b0b5508 0x0f 550f Oc

HOSTDATA 0x13135510 0x17551714

HOSTDATA 0x1b1b5518 0x1f 551f 1c

HOSTDATA 0x03035500 0x07550704

HOSTDATA 0x0b0b5508 0x0f 550f Oc

HOSTDATA 0x13135510 0x17551714

HOSTDATA 0x1b1b5518 0x1f 551f 1c

HOSTDATA Oxcbcb55c¢8 Oxcf 55cf cc

HOSTDATA 0xd3d355d0 0xd755d7d4

HOSTDATA Oxdbdb55d8 0xdf 55df dc

HOSTDATA 0Oxe3e355e0 0Oxe755e7e4
=

Load the FB from SRAMwith the above col or data.

BLTDEF 0x1000 # opl_is_sram res_is_rdram
DRAVDEF 0x00cc # rop_opl_copy

OP0O_opRDRAM pt . X 0x10 # BLT to 10h, 10h

September 1996

2-32

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

OPO_opRDRAM pt .

BLTEXT_EX. pt. X
BLTEXT_EX. pt.Y

Load 8x8 col or

Y

0x10
128
20

2D PROGRAMMER'S GUIDE

size is 128x20

pattern fromhost to franme buffer.

BLTDEF 0x1020 # opl_is_host, res_is_rdram
DRAVDEF 0x00CC # rop_opl_copy
OPO_opRDRAM pt . X 0x00 # BLT pattern to 0,0
OPO_opRDRAM pt . Y 0x00

BLTEXT_EX. pt. X 64

BLTEXT_EX. pt.Y 1

Pattern contains lots of 55's to illustrate col or transparency

later on.

HOSTDATA 0x55555555 0x55555555

HOSTDATA 0x22222220 0x33333333

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x22222222 0x33333333

HOSTDATA 0x55555555 0x55555555

=

Pattern the screen with the above col or
raw pattern.

pattern just to show the

PATOFF 0000

BLTDEF 0x1109 # res RDRAM OP2 COL PAT
DRAVWDEF 0x00F0 # PAT copy

OP2_opRDRAM pt . X 0x00

OP2_opRDRAM pt . Y 0x0

OP0_opRDRAM pt . X 0x02 # put it at 2,2
OPO_opRDRAM pt . Y 0x02

BLTEXT_EX. pt . X 0x30 # make it 30Hx10H
BLTEXT_EX. pt.Y 0x10

H*

Illustrate source transparency. Source pixels that match 55 wil|
not be witten to result.

Pattern a rectangle on the screen over top of the original color
rectangle with the color pattern with color transparency on.

#

Note that OP2 is used for both transparency and pattern.

PATOFF 0000
BLTDEF 0x1109 # res RDRAM OP2 COL PAT
DRAVDEF 0X01F0 # PAT copy, trn=on / opn="="

Copyright 1996 — Cirrus Logic Inc. 2-33 September 1996

OP2_opRDRAM pt . X 0x00
pattern

OP2_opRDRAM pt . Y 0x0
OPO_opRDRAM pt . X 0x40
col or

OPO_opRDRAM pt . Y 0x14
BLTEXT _EX. pt. X 0x40
BLTEXT_EX. pt.Y 0x18

11 lustrate destination transparency. Destination
be witten to.

PATOFF 0000
BLTDEF 0x1191
OP2 col or

DRAVWDEF 0x03CC
OP1_opRDRAM pt . X 0x00
sour ce.

OP1_opRDRAM pt. Y 0x00
OP2_opRDRAM pt . X 0x14
OP2_opRDRAM pt . Y 0x08
OP0O_opRDRAM pt . X 0x14
OPO_opRDRAM pt . Y 0x08

BLTEXT_EX. pt. X 0x18
BLTEXT_EX pt.Y 0x20

September 1996

2D PROGRAMMER'S GUIDE

2-34

CL-GD546X Software Technical Reference Manual

Point to source col or

containing 55 s

Point on top of existing

rectangl e.

Paint it!

pi xel s that match 55 wi || not

H*

res RDRAM OP1 col or pat;

H*

srccpy; trn=on, op="!="
point to color pattern

H

point to “destination” for
transparent conpare

H* H*

point to result destination

Paint it 18Hx20H

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.14 Monochrome-Pattern-Transparency Mask Programming Example

This BitBLT example puts several 8 x 8 patterns onto the destination region. The result is a four-
square set of BitBLTs. The monochrome pattern is stored in the frame buffer in one 64-bit qword.
With monochrome transparency, the monochrome bits directly control the writes to the frame
buffer. With the transparency compare operation set to equal, any bit that is a one blocks the write
to the frame buffer for the corresponding pixel. A zero bit allows the write. The foreground and
background colors need only be set if the programmer is actually using the monochrome-to-color

conversion.

Bl TMASK OxFFFFFFFF

OP_COPBGCOLOR 0x00000000

OP_CPFGCOLOR OxFFFFFFFF

OP1_opRDRAM pt . X 0x0

OPO_opSRAM 0x0
=

Load 8x8 npno pattern for diagonal stripes fromhost to frane

buffer.

BLTDEF 0x1020 # opl_is_host, res_is_rdram
DRAVDEF 0x00CC # rop_opl_copy
OPO_opRDRAM pt . X 0x0 # BLT -> 10,0
OPO_opRDRAM pt . Y 0x0 # BLT -> 10,0
OP1_opRDRAM pt . X 0x0 # Host Phase of zero
BLTEXT_EX. pt. X 0x8

BLTEXT_EX pt.Y 0ox1

HOSTDATA 0x88112244

HOSTDATA 0x88112244
=

Transparent tile the upper right square with a BLT down

BLTDEF 0x109D # opl color pat, op2 MONOPAT
DRAVDEF 0x01F0 # transp on, ROP=PATCPY
PATOFF 0x0000

OPO_OopRDRAM pt . X 0x24

OPO_opRDRAM pt . Y 0x02

OP2_opnmRDRAM pt . X 0x00 # nono pat at 0,0
OP2_opnmRDRAM pt . Y 0x00

BLTEXT_EX. pt. X 32

BLTEXT_EX pt.Y 32
-

Transparent tile the lower right square with a BLT up

BLTDEF 0x909D # opl color pat, op2 MONOPAT
DRAVDEF 0Ox01FO0 # transp on, ROP=PATCPY
PATOFF 0x0000

OPO_opRDRAM pt . X 0x24

OPO0_opRDRAM pt . Y 0x42 # lower |eft dest
OP2_opnmRDRAM pt . X 0x00 # nmono pat at 0,0
OP2_opnRDRAM pt . Y 0x00

BLTEXT_EX. pt. X 32

BLTEXT_EX pt.Y 32

Copyright 1996 — Cirrus Logic Inc. 2-35 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.4.15 Byte BitBLT Using MBIitBLT and BitBLT for Color-Fills Programming Example

In this example, a 16-bpp frame buffer demonstrates how to put four colored rectangles of pixel
extent, 100 x 100 (byte extent 200 x 100 lines), onto the screen with mixed OP pointer types and

BLTEXT types.

H o o o o o o o o o o o e e e e e e e e e e e e e e eeea s
FILL WTH PI XEL PO NTERS AND PI XEL EXTENTS. Goes to PP (0, 0)
BLTDEF 0x1070 # opl color fill
DRAWDEF 0x00CC # rop = FILL
OP_OPBGCOLOR 0x11111111

OP0_opRDRAM pt. X 0
OPO_OpRDRAM pt. Y O

BLTEXT_EX. pt. X 100
BLTEXT_EX. pt.Y 100

B o o eeeeeooo
FILL WTH PI XEL PO NTERS AND BYTE EXTENTS. Goes to PP (100, 200)
OP_OPBGCOLOR 0x44444444

OPO_opRDRAM pt . X 100
OPO_opRDRAM pt . Y 100

MBLTEXT_EX. pt . X 200 # in 16 bpp, 100 pixels wide
is 200
bytes
MBLTEXT_EX. pt.Y 100
H o o o o o o o o o o o e e e e e e e e e e e eeeeeoao-
FILL WTH BYTE PO NTERS AND BYTE EXTENTS; GOES TO PP(200, 200)
OP_COPBGCOLOR 0x88888888
OP0_opnRDRAM pt . X 400 # in 16 bpp, X pixel address
200 is

byte address 400
OPO_opnmRDRAM pt . Y 200

MBLTEXT_EX. pt . X 200 # in 16 bpp, 100 pixel s wide
is 200

bytes
MBLTEXT _EX. pt.Y 100
B o o o e o eeaa e
FILL WTH BYTE PO NTERS AND PI XEL EXTENTS. GOES TO PP(300, 300)
OP_OPBGCOLOR 0OxCCCcccece
OPO_opnRDRAM pt . X 600 # in 16 bpp, X pixel address
300 is

byte address 600
OPO_opnRDRAM pt . Y 300
BLTEXT_EX. pt. X 100
BLTEXT_EX pt.Y 100

September 1996 2-36 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER'S GUIDE

2.4.16 Byte BitBLT Using MBIitBLT to Off-Screen Cache Programming Example

Using the MBItBLT from host, this example demonstrates loading a 56-byte auto-BitBLT record
into the frame buffer at (0,1024). This is useful for loading data off-screen in a bit-per-pixel inde-
pendent manner. Typical uses of this example are for font loading, pattern caching, auto-BitBLT

record downloads, and cursor-bitmap loading.

Bl TMASK

BLTDEF
col or

DRAVDEF

OPO_0pMRDRAM pt . X 0x0000

desti nati on

OP0_opMRDRAM pt . Y 0x0400
OP1_opRDRAM pt . X

dwor ds

MBLTEXT_EX. pt . X
MBLTEXT _EX. pt. Y

Auto BLT table 1:

HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA
HOSTDATA

Copyright 1996 — Cirrus Logic Inc.

OXFFFFFFFF
0x1020

0x00CC

0x0000

0x0038
0x0001

0x00000200
0x100900F0
0x00000000
OxFFFFFFFF
0x00000080
0x00000000
0x00000000
0x00000000
0x00000020
0x00000000
0x00180080
0x00000000
0x00000000
0x00000000

2-37

H O OH H R H*+ H®*

H*

turn on all bits
OP1/ host source to RDRAM

result
r op: SRCCOPY
point to off-screen

| ocation (0, 1024)

data is aligned in host
phase = 0
byte extents are 56X bu 1Y

September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.5

25.1

Register Header Files

This section presents the implementation of a set of ‘C’ language data types and structures,
header files, used for interfacing software to the CL-GD546X. The first file, Igtypes.h, defines sev-
eral types used to create the registers data structure that follows in the second file, Igregs.h.

Header File — Igtypes.h

#i f ndef _LGTYPES_H
#define _LGIYPES_H
/* Use #define here instead of typedef to nake it easier on systens

where these sane types are al so defined el sewhere, i.e., it is possible to use
#i fdef, #undef, etc. on these types.
*/

#defi ne byte unsigned char
#defi ne word unsi gned short
#define dword unsi gned | ong

t ypedef unsigned | ong ul

t ypedef unsi gned short word,;

t ypedef unsi gned char byte;

t ypedef unsi gned char bool ean

typedef struct PT { /1 point
WORD X;
WORD Y;

} PT,

typedef struct LOH ({ /1 low, high
WORD LO
WORD Hi ;

} LOH;

typedef union _reg32 { /1 32 bit register
DWORD dw;
DWORD DW
PT pt;
PT PT;
LOHI | h;
LOHI LH;

} REG32;

typedef struct LOH 16 { /1 low, high
BYTE LO
BYTE Hi ;

} LOHI 16;

typedef struct PT16 { /1 point
BYTE X;
BYTE Y;

September 1996 2-38 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

25.2

} PT16;
typedef union _regl6 { /1 16 bit register
WORD w,
WORD w
PT16 pt;
PT16 PT;
LOH 16 | h;
LOHI 16 LH;
} REGL6;
#endi f /* _LGTYPES H */

Header File — Igregs.h

This file contains the register-set mapping with all component offsets correctly matched to the
CL-GD546X. It contains a record definition for the auto-BitBLT record using the types defined in
lgtypes.h to construct the Graphics_Accelerator_Registers_Type. Bit-field # defines are given to
simplify construction of control fields for selected registers.

#i f ndef LGREGS

#defi ne LGREGS

#i nclude "I gtypes. h"

/1 CL-@D546X Graphics Accel erator Registers data type.

typedef struct GAR {

/1 Menory-mapped Registers

/1 Menory-mapped VGA Registers

BYTE gr CRO; /1 0x0
BYTE gr PADCRO[3] ;

BYTE gr CR1; /1 0x04
BYTE gr PADCRL[3] ;

BYTE gr CR2; /10x08
BYTE gr PADCR2[3] ;

BYTE gr CR3; /10x0C
BYTE gr PADCR3[3] ;

BYTE gr CR4; /10x010
BYTE gr PADCR4[3] ;

BYTE gr CR5; /10x014
BYTE gr PADCR5[3] ;

BYTE gr CRe6; /10x018
BYTE gr PADCR] 3] ;

BYTE gr CR7; /10x01C
BYTE gr PADCR7[3] ;

BYTE gr CR8; /10x020
BYTE gr PADCRS[3] ;

BYTE gr CR9; /1 0x024

Copyright 1996 — Cirrus Logic Inc. 2-39 September 1996

2D PROGRAMMER'S GUIDE

September 1996

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

gr PADCR9[3] ;
gr CRA;

gr PADCRA| 3] ;
gr CRB;

gr PADCRBJ 3] ;
gr CRC,

gr PADCRC] 3] ;
gr CRD;

gr PADCRD[3] ;
gr CRE;

gr PADCREJ 3] ;
gr CRF;

gr PADCRF[3] ;
gr CR10;

gr PADCR10[3] ;
gr CR11;

gr PADCR11[3] ;
gr CR12;

gr PADCR12[3] ;
gr CR13;

gr PADCR13[3] ;
gr CR14;

gr PADCR14[3] ;
gr CR15;

gr PADCR15[3] ;
gr CR16;

gr PADCR16[3] ;
gr CR17;

gr PADCR17[3] ;
gr CR18;

gr PADCR18[3] ;
gr CR19;

gr PADCR19[3] ;
gr CR1A;

gr PADCR1A[3] ;
gr CR1B;

gr PADCRLB[0x74- 0x6D) ;

gr CR1D;
gr PADCR1D[3] ;
gr CR1E;

gr PADCRLE[0x80- 0x79] ;

grM SC,

2-40

CL-GD546X Software Technical Reference Manual

/1 0x028

/10x02C

/1 0x030

/1 0x034

/1 0x038

/1 0x03C

/ 1 0x040

/1 0x044

/1 0x048

/1 0x04C

/1 0x050

/1 0x054

/1 0x058

/1 0x05C

/1 0x060

/1 0x064

/1 0x068

/1 0x06C

/1 0x074

/1 0x078

/1 0x080

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

BYTE gr PADM SO 3] ;

BYTE gr SRE; /1 0x084
BYTE gr PADSRE[3] ;

BYTE gr SR1E; /1 0x088
BYTE gr PADSRLE[3] ;

BYTE gr BCLK_Nurner at or ; /1 0x08C
BYTE gr PADBCLK Nunerator|[3] ;

BYTE gr SR18; /1 0x090
BYTE gr PADSR18] 3] ;

BYTE gr SR19; /1 0x094
BYTE gr PADSR19][3] ;

BYTE gr SR1A; /1 0x098
BYTE gr PADSRLA[0xAQ- 0x99] ;

BYTE gr Pal ett e_Mask; / 1 0x0A0
BYTE gr PADPal ett e_Mask][3] ;

BYTE gr Pal ett e_Read_Addr ess; / 1 0x0A4

BYTE gr PADPal ette_Read_Address][3] ;
#define grPalette _State Read Only grPal ette Read Address

BYTE grPal ette Wite_ Address; /1 0x0A8
BYTE gr PADPal ette Wite_ Address[3];
BYTE grPal ette_Dat a; /1 0OXO0AC

BYTE gr PADPal et t e_Dat a[0xB1- OxAD] ;

/1l Video Pipeline Registers
BYTE grPal ette_State; /1 0x0BO
BYTE gr PADPal ett e_St at e[OxB4- 0xB1] ;

BYTE gr Ext ernal _Overl ay; /1 0x0B4
BYTE gr PADExt er nal _Over| ay[0xB8- 0xB5] ;

BYTE gr Col or _Key; /1 0x0B8
BYTE gr PADCol or _Key[OxBC- 0xB9] ;

BYTE gr Col or _Key_Mask; /1 0x0BC
BYTE gr PADCol or _Key_ Mask[OxC0- 0xBD] ;

WORD gr For nat ; /10x0CQ0
BYTE gr PADFor mat [OXxCA- O0xC2] ;

BYTE gr Stop_BLT_3; /1 OxOCA
BYTE grStart_BLT_3; /1 0x0CB
WORD gr X _Start_2; /1 0x0CC
WORD grY_Start _2; /1 0OxOCE
WORD gr X_End_2; / 1 0x0DO0
WORD gr Y_End_2; /1 0x0D2
BYTE gr Stop_BLT_2; /1 0x0D4

Copyright 1996 — Cirrus Logic Inc. 2-41 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

BYTE grStart_BLT_2; / 1 0x0D5
BYTE gr PADSt op_BLT_2[OxDE- 0xD6] ;

BYTE gr Stop_BLT_1; / 1 0xODE
BYTE grStart_BLT_1; / 1 OxODF
WORD gr Cur sor _X; /1 0OXxOEQ
WORD gr Cur sor _Y; /1 OXOE2
WORD gr Cursor _Preset; /1 OxOE4
WORD gr Cur sor _Control ; / 1 OxOE®6
WORD gr Cursor _Locati on; /1 OxOE8

WORD gr Di spl ay_Threshol d_and_Ti li ng;//0x0EA
BYTE gr PADDi spl ay_Thr [FOh- ECh] ;

WORD gr Test ; /1 OXOFO0
WORD gr Test _HT,; /1 0Ox0F2
WORD gr Test VT, /1 OXOF4
BYTE gr PADTest _VT[0x100- 0x00F6] ;

/1 V-PORT Registers
WORD grX _Start_Qdd; /1 0x100
WORD grX Start_Even; /10x102
WORD grY_Start_(dd; /1 0x104
WORD grY_Start_Even; /10x106
WORD grVport W dt h; /10x108
BYTE gr Vport _Hei ght; /1 0x10A
BYTE gr PADVport _Hei ght;
WORD gr Vport _Nbde; /10x10C
BYTE gr Vpor t pad[0x180- 0x10E] ;

/1 LPB Registers
BYTE gr LPB_Dat a[0x1F8- 0x180] ; // 0x180
BYTE gr PADLPB[Ox1FC- 0x1F8] ;
WORD grLPB_Confi g; /1 Ox1FC
WORD gr LPB_St at us; /1 OX1FE

/1 Rambus Regi sters
/1 Ranbus Registers for BIOS Sinulation

WORD gr Rl F_CONTROL; /1 0x200
WORD gr RAC_CONTROL; /10x202
WORD gr RAMBUS_TRANS; /1 0x204
BYTE gr PADRAMBUS_TRANS[0x204- 0x206] ;
REG32 gr RAMBUS_DATA,; /1 0x240
BYTE gr PADRAMBUS_DATA[0x280- 0x244] ;

/1l Serial Bus Registers
WORD gr Seri al _Bus; /1 0x0280
BYTE gr PADSer i al _Bus[0x300- 0x282] ;

/1 PCl Configuration Registers

September 1996 2-42 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

WORD gr Vendor _I D /1 0x0300
WORD gr Devi ce_I D /1 0x0302
WORD gr Comrand,; /1 0x0304
WORD gr St at us; /1 0x0306
BYTE gr Revi si on_I D, /1 0x0308
BYTE gr d ass_Code; / /1 0x0309
BYTE gr PADCl ass_Code[Ox30E- 0x30A] ;
BYTE gr Header _Type; /1 0x030E
BYTE gr PADHeader _Type[0x310- 0x30F] ;
REG32 gr Base_Address_0; /10x0310
REG32 gr Base_Address_1; /10x0314
BYTE gr PADBase_Addr ess_1[0x32C- 0x318] ;
WORD gr Subsystem Vendor _ID; //0x032C
WORD gr Subsystem | D; /1 0x032E
REG32 gr Expansi on_ROM Base; /1 0x0330
BYTE gr PADExpansi on_ROM Base[0x33C- 0x334] ;
BYTE grinterrupt_Line; /1 0x033C
BYTE grinterrupt _Pin; /1 0x033D
BYTE gr PADI nt errupt _Pi n[Ox3F8- 0x33E] ;
REG32 gr VGA_Shadow; /1 0xO3F8
REG32 grVSs_Control ; / 1 0x0O3FC

/1 Graphics Accel erator Registers
/1 2D Engine Control Registers

WORD gr STATUS; /1 0x400
WORD gr CONTROL; /1 0x402
BYTE gr QFREE; / 1 0x404
BYTE gr OFFSET_2D; /1 0x405
BYTE gr TI MEQUT; / 1 0x406
BYTE gr TI LE_CTRL; /1 0x407
REG32 gr RESI ZE_A_opRDRAM /1408
REG32 gr RESI ZE_B_opRDRAM /140C
REG32 gr RESI ZE_C_opRDRAM /1410
BYTE pad2[0x480- 0x414] ;

REG32 gr COMVAND; /1480
BYTE pad3[0x500- 0x484] ;

WORD grMNY; /1500
WORD gr MAJ_Y; /1502
WORD gr ACCUMY; /1504
BYTE pad3A[0x508- 0x506] ;

WORD grM N_X; /1508
WORD gr MAJ_X; /1 50A

Copyright 1996 — Cirrus Logic Inc. 2-43 September 1996

2D PROGRAMMER'S GUIDE

WORD
REGL6
WORD
WORD
BYTE
REG32
REG32
WORD
REGL6
BYTE
REG32
REG32
WORD
WORD
BYTE
REG32
REG32
WORD
WORD
BYTE
WORD
REGL6
REG32
/1 WORD

CL-GD546X Software Technical Reference Manual

gr ACCUM _X;

gr LNCNTL,;

gr STRETCH_CNTL;
gr CHROVA_CNTL;

pad3B[0x520- 0x514] ;

gr OPO_opRDRAM

gr OPO_op VRDRAM

gr OPO_opSRAM

gr PATOFF,;

pad4[0x540- 0x52C] ;
gr OP1_opRDRAM

gr OP1_opMRDRAM

gr OP1_opSRAM

gr OP1_opMSRAM
pad5[0x560- 0x54(C ;
gr OP2_opRDRAM

gr OP2_op VRDRAM

gr OP2_opSRAM

gr OP2_opNVSRAM
pad6] 0x580- 0x56(C] ;
gr SRCX;

gr SHRI NKI NG,

gr DRAVBLTDEF;

gr DRAVIDEF,;

#defi ne gr DRAWDEF gr DRAWBLTDEF. LH. LO

/1 WORD

gr BLTDEF;

#defi ne gr BLTDEF gr DRAVBLTDEF. LH. HI

REGL6
BYTE
REG32
REG32
REG32
WORD
BYTE
REG32
REG32
BYTE
REG32
REG32
REG32
WORD
BYTE

September 1996

gr MONOQW

pad7[Ox5e0- 0x58A] ;
gr OP_opFGCOLOR;

gr OP_opBGCOLOR;

gr Bl TMASK;

gr PTAG

pad8[Ox5F0 - Ox5EE];

gr CHROVA_LOVER
gr CHROVA_UPPER;

pad8a [0x600 - Ox5F8];

gr BLTEXT_XEX;

gr BLTEXTFF_XEX;

gr BLTEXTR_XEX;

gr BLTEXT_LN_EX;
pad9[0x620- 0x60E] ;

2-44

/150C
/1 50E
/1510
/1512

/1520
/1524
/1528
1 152A

/1540
/1544
/1548
/1 54A

/1560
/1564
/1568
I/ 56A

/1580
/1582
/1584
/1584

/1586

/1588

/1 5E0
/| 5E4
/[5E8
/| 5EC

/* 5F0 */
/* 5F4 *

/1600
/1604
/1608
/160C

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

REG32 gr MBLTEXT_XEX; /1620
BYTE pad9al 0x628- 0x624] ;
REG32 gr MBLTEXTR_XEX; /1628
BYTE pad9b[0x700- 0x62C] ;
REG32 gr BLTEXT_EX; /1700
REG32 gr BLTEXTFF_EX; /1704
REG32 gr BLTEXTR_EX; /1708
BYTE padl10[0x720- 0x70C] ;
REG32 gr MBLTEXT_EX; /1720
BYTE padl0a] 0x728- 0x724] ;
REG32 gr MBLTEXTR_EX; /1728
BYTE padl10b[0x800- 0x72C] ;

/[1sim
DWORD gr HOSTDATA[800h] ; /1800 -> fff

} Graphi cs_Accel erat or _Regi sters_Type,

* pGaphics_Accel erator_Regi sters_Type, GAR
/1 Status Regi ster val ues

#def i ne STATUS_FI FO NOT_EMPTY 0x0001
#def i ne STATUS_PI PE_BUSY 0x0002
#def i ne STATUS_DATA_AVAI L 0x8000

#defi ne STATUS | DLE (STATUS_PI PE BUSY | STATUS FI FO NOT_EMPTY)
/1 Control register val ues

#defi ne WFlI FO_SI ZE 32 0x0100
#def i ne HOST_DATA_AUTO 0x0200
#defi ne SWZ_CNTL 0x0400
/1 bits 12:11 define tile size

#define TILE Sl ZE 128 0x0000
#define TILE_SI ZE 256 0x0800
#define TILE_SI ZE 2048 0x1800
/1 bits 14:13 define bits per pixel for graphics nodes
#defi ne CNTL_8 BPP 0x0000
#defi ne CNTL_16 BPP 0x2000
#defi ne CNTL_24 BPP 0x4000
#define CNTL_32_BPP 0x6000

[l Tile_ctrl register
/1l bits 7:6 interl eave nenory

#define I LM 1_WAY 0x00
#define I LM 2 WAY 0x40
#define | LM 4 _WAY 0x80

/1 bits 5:0 define BYTE pitch of display menory in conjunction with
/1 TILE_ SIZE
/1 from Control register

Copyright 1996 — Cirrus Logic Inc. 2-45 September 1996

2D PROGRAMMER'S GUIDE

/*

* DRAWDEF contents

*/

CL-GD546X Software Technical Reference Manual

#def i ne DD_ROP 0x0000
#defi ne DD_TRANS 0x0100 /* transparent */
#def i ne DD_TRANSOP 0x0200
#defi ne DD_PTAG 0x0400
#define DD_SAT_2 0x4000
#define DD_SAT_ 1 0x8000
/1 LN_CNTL fields

#defi ne LN_XI NTP_EN 0x0001
#define LN_YI NTP_EN 0x0002
#defi ne LN_XSHRI NK 0x0004
#def i ne LN_YSHRI NK 0x0008
/1 These are the auto BLT control bits

#defi ne LN_RESI ZE 0x0100
#define LN_CHAI N_EN 0x0200
/1 These are the yuv4ll output average control bits
#defi ne LN_LOWPASS 0x1000
#defi ne LN _UVHOLD 0x2000
/1 This extracts the data format field from LNCNTL

#defi ne LN_FORVAT 0x00F0
#define LN_YUV_SH FT 0x4
#define LN 8BIT 0x0000
#defi ne LN_RGB555 0x0001
#defi ne LN _RGB565 0x0002
#define LN_YUv422 0x0003
#define LN_24ARCGB 0x0004
#defi ne LN_24PACK 0x0005
#define LN YUv411l 0x0006

17
/*

15 are reserved

* pnBLTDEF contents

*/

#defi ne BD_OP2

#define BD _OP1

#defi ne BD_OPO

#defi ne BD_TRACK X

September 1996

0x0001

0x0010

0x0100

0x0200

2-46

/* start of OP2 field
3:0 */

/* start of OPl1l field
7:4 */

/* start of OPO field
8:8 */

[* Track OP ptrs in X
9: 9 (when inplenmented) */

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

#defi ne BD _TRACK Y 0x0400 [* Track OP ptrs inY
10: 10(when i npl enent ed) */
#defi ne BD_SAME 0x0800 /* comon operand field
11: 11 */
#defi ne BD_RES 0x1000 /* start of RES field
14: 12 */
#define BD _YDI R 0x8000 [* y direction bit 15:

*
/* STRETCH CNTL fields CL-GD546X / (Laguna 1+) */

#defi ne STR_XI NTP_EN 0x0001
#define STR_YI NTP_EN 0x0002
#def i ne STR_XSHRI NK 0x0004
#defi ne STR_YSHRI NK 0x0008
/* These are the autoblt control bits -- REVB chips (using stretch ctrl)*/
#defi ne STR_RESI ZE 0x0040
#defi ne STR_CHAI N_EN 0x0080

/* These are the yuv41ll out put average control bits */
#def i ne STR_LOWPASS 0x0010
#defi ne STR_UVHOLD 0x0020

/* This extracts the data format field from STRETCH CTRL */

#defi ne STR_SRC_FORVAT 0xF000
#define STR_SRC SHI FT 12
#defi ne STR_DEST_FORVAT 0xO0F00
#define STR_DEST _SHI FT 8
#define STR 8BI T 0x0
#defi ne STR_RGB555 0x1
#def i ne STR_RGB565 0x2
#defi ne STR_RGB888 0x3
#defi ne STR_RGBA888 0x4
#define STR_YUV41ll 0x8
#define STR YWv422 0x9
#defi ne STR YUv444 OxA
#define STR_YUVA444 0xB
#define STR_YWV10 0xC
#defi ne STR_YUV12 0xD

Copyright 1996 — Cirrus Logic Inc. 2-47 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

/* These are for the CHROMA CNTL register */

#def i ne CHROVA ENABLE 0x8000
#def i ne CHROVA_YWV_CV 0x4000
#defi ne CHROVA_TAG _EN 0x1000
#defi ne CHROVA_SEC SL1 0x0800
#defi ne CHROVA_SEC SLO 0x0400
#defi ne CHROVA_RGB_QA 0x0200
#defi ne CHROVA_SEC QA 0x0100
#defi ne CHROVA_SEC EN 0x0080
#defi ne CHROVA_R_EN 0x0040
#defi ne CHROVA G EN 0x0020
#defi ne CHROVA_B_EN 0x0010
#define CHROVA SEC | O 0x0008
#defi ne CHROVA_R 1O 0x0004
#define CHROVA_ G 10O 0x0002
#define CHROVA B 10 0x0001

/*
* Field values for BD_OP? and BD res.

* LL(grBLTDEF, (BD_OP1 * | S HOST_MONO +
* (BD_OP2 * (IS rdram+ IS _PATTERN)) +
* (BD_RES * | S_ RDRAM);

*/

#define | S_SRAM 0x0000

#define |I'S_RDRAM 0x0001

#define | S_HOST 0x0002

#define I'S_SCOLID 0x0007

#define | S_SRAM MONO 0x0004

#define |I'S_RDRAM MONO 0x0005

#define | S_HOST_MONO 0x0006

#define | S_PATTERN 0x0008

#define | S_MONO 0x0004

/1 these are for BD _RES only

#define | S_SRAMD 0x0004

#define |I'S_SRAML 0x0005

#define | S_SRAM 0x0006

#define |I'S_SRAML2 0x0007

/1l these are for BD _SAME

#defi ne NONE 0x0000

September 1996 2-48 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

typedef struct autoblt_regs {

REGL6
REGL6
REG32
REG32
REG32
REG32
WORD
WORD
REG32
WORD
REGL6
REG32
WORD
WORD
REG32
WORD
WORD
WORD
WORD
REG32
REG32
REG32
WORD
WORD

STRETCH_CNTL;
SHRI NKI NC;
DRAVBBL TDEF;
FGCOLOR;
BGCOLOR;
OP0_opRDRAM
MAJ Y,

M NY;
OP1_opRDRAM
ACCUMY;
PATOFF;
OP2_opRDRAM
MAJ_X;

M N_X;
BLTEXT,;
ACCUM_X;
OP0_opSRAM
SRCX;
OP2_opSRAM
NEXT_HEAD;
CHROVA LOVER;
CHROVA_UPPER;
CHROVA _CNTL;
reserved [3];

} autoblt _regs, *autoblt ptr;

#endi f

Copyright 1996 — Cirrus Logic Inc.

2-49

2D PROGRAMMER'S GUIDE

I/ XY address of next in
// chain if LNCTL chain

11

11

set

LGREGS

September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

2.6 2D Graphics Engine Initialization

This section discusses initialization of the CL-GD546X 2D Graphics Engine registers. It is for dis-
play-driver developers working on the adapter initialization code. The following documentation dis-
tinguishes between display mode initialization code (mode-switch code) and 2D engine
initialization code.

The mode-switch code is typically implemented in the BIOS. This code handles the details of set-
ting up the display mode.

The display initializes and manages 2D Engine registers. Some of these registers are set once by
the programmer and never need to be set again. Others may need short-term changes from the
‘normal’ setting for specific operations.

The display-driver programmer must consider initializing the following registers: BITMASK, CON-
TROL, LINECTL, OFFSET_2D, TAG_MASK, and TIMEOUT.

BITMASK Register

The 2D engine initialization code manages the BITMASK register. This register is typically not
modified by the mode-switch code. The BITMASK register is set to all ones, allowing writes to all
bits of each dword. For certain specialized graphics operations, this value can be overridden. Be
sure to re-enable all bits.

CONTROL Register

In the CONTROL register, the bpp and TILE_SIZE fields are set by the mode-switch code, and not
the AUTO_BLT_EN and SWIZ_CNTL fields. The SWIZ_CNTL field is typically set to ‘0’, and only
set to ‘1’ for operations that specifically require the swizzling of host data. Whether or not the pro-
grammer enables auto-BitBLTs by default is a design decision. Typically, auto-BitBLTs are
enabled. Graphics operations that use SRAM for intermediate storage should disable auto-Bit-
BLTs to prevent the contents of the SRAMs from being destroyed by auto-BitBLTs.

LINECTL Register

Most LINECTL register fields are set by the graphics operations that use them. Only the Graphics
Pixel Format field is set by the mode-switch code to match the value in CONTROL.BPP. This field
is normally set to match CONTROL.BPP for the benefit of stretch BitBLTSs.

OFFSET_2D Register

The OFFSET_2D register typically does not have to be set, since most applications put the 2D
frame buffer at ‘0,0’. However, the programmer should initialize and control this register appropri-
ately for applications that require a non-zero start for the 2D frame buffer (for example, for double-
buffered graphics).

TAG_MASK Register

In the TAG_MASK register, the PTMASK field is set to ‘1’ when using 9-bit RDRAMS. The pro-
grammer can use the PTAG field in the DRAWDEF register to tag video data in the frame buffer.

September 1996 2-50 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

TIMEOUT Register

The TIMEOUT register controls the behavior of the 2D engine during long transactions from the
host interface. This is caused by trying to write to the command FIFO when there is no room. If
the transaction times out, the data in the transfer is dropped and the bus is released. This causes
erratic behavior in the display driver, but is more acceptable than locking up the bus. To circumvent
the above problem, set the time-out delay to a large value and enable time-outs. In particular, set
TIMEOUT.TIMEOUT to ‘1111’, TIMEOUT.TIMEOUT _EN to ‘1’ and TIMEOUT.TIMEOUT _X16 to
‘1’. This should only be required during driver development as a debug aid. Production drivers
should have TIMEOUT disabled.

Copyright 1996 — Cirrus Logic Inc. 2-51 September 1996

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-52 Copyright 1996 — Cirrus Logic Inc.

	Table of Contents
	1. Overview
	2. 2D PROGRAMMER’S GUIDE
	2.1 2D Graphics Engine
	2.1.1 2D Frame Buffer
	2.1.2 Bit Swizzle
	2.1.3 Patterns
	2.1.4 Monochrome-to-Color Expansion
	2.1.5 Transparency

	2.2 2D Graphics BitBLT Operations
	2.2.1 Commonly Used BitBLT Control Registers
	2.2.2 BitBLT Programming Overview
	2.2.3 Monochrome-to-Color Conversion BitBLTs
	2.2.4 Transparent BitBLTs
	2.2.5 Pattern BitBLTs
	2.2.6 Host BitBLTs
	2.2.7 Byte BitBLTs (MBitBLTs)

	2.3 Tips and Tricks
	2.4 BitBLT Programming Examples
	Reading the Programming Examples
	2.4.1 Software Cursor Programming Example
	2.4.2 Font Load Programming Example
	2.4.3 Text BitBLT, Foreground/Background Color Pro...
	2.4.4 Text BitBLT, Monochrome Font from Host Progr...
	2.4.5 Text BitBLT, Transparent Background Programm...
	2.4.6 Simple Source Copy Programming Example
	2.4.7 Copy Frame Buffer-to-Host Programming Exampl...
	2.4.8 Color-Pattern BitBLT Programming Example
	2.4.9 Monochrome-to-Color BitBLT Programming Examp...
	2.4.10 Solid-Color-Fill Programming Example
	2.4.11 Copy Host to SRAM to Frame Buffer Programmi...
	2.4.12 Transparent-Monochrome-Cursor Programming E...
	2.4.13 Color-Transparency BitBLTs Programming Exam...
	2.4.14 Monochrome-Pattern-Transparency Mask Progra...
	2.4.15 Byte BitBLT Using MBitBLT and BitBLT for Co...
	2.4.16 Byte BitBLT Using MBitBLT to Off-Screen Cac...

	2.5 Register Header Files
	2.5.1 Header File — lgtypes.h
	2.5.2 Header File — lgregs.h

	2.6 2D Graphics Engine Initialization
	BITMASK Register
	CONTROL Register
	LINECTL Register
	OFFSET_2D Register
	TAG_MASK Register
	TIMEOUT Register

	3. 3D Programmer's Guide
	4. Video Programming
	5. System Operation
	6. BIOS Specification
	Index
	Sales Offices/Company Information
	Reader Response Card

