

1

Overview

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-2 Copyright 1996 – Cirrus Logic Inc.

1. OVERVIEW

This volume presents an overview of the CL-GD546X and a programming model. The organiza-
tion of the various relevant memories is discussed, as are the graphical operations. The header
files that formally define the registers are listed in the register structures section. The last section
covers system-level considerations when using more than one CL-GD546X or when using the
CL-GD546X with other adapters.

Reading and Using the Programming Examples

Many of the programming examples used throughout this chapter are extracted from device test
scenarios. They generally consist of register names followed by values to be written to those reg-
isters. The register names are case insensitive and follow the standard set in the register chapters
(the

Laguna VisualMedia



 Accelerators Family — CL-GD546X Volume I (Hardware Reference
Manual, Second Edition, September 1996)

) and in the ‘lgregs.h’ file. The values to be written to
the registers can be in decimal or hexadecimal format. Hex numbers have a letter ‘h’ suffix on
them. Numbers without a suffix are decimal format. The data width (8, 16, 32 bits) can be inferred
from the register name by referring to the register description and can also be inferred by the size
of the data to be written. Typically, four digit hex numbers and decimal numbers are written as 16-
bit words, while eight digit hex values are always written as 32-bit dwords. The pound sign (#) indi-
cates a comment and the text following it is information for the reader.

The examples listed in this chapter are also listed on the Cirrus Logic BBS as part of the ‘SS.c’
program.

1.1 Architectural Overview

This section provides a brief overview of the CL-GD546X graphics system from a programmer’s
point of view. It starts with an overall system block diagram (Figure 1-1) that presents the entire
graphics system. This is followed with a block diagram (Figure 1-2) showing a conceptual view of
the CL-GD546X.

1.1.1 System Block Diagrams

Figure 1-1 shows a graphics subsystem based on the CL-GD546X. The blocks shown as solid
lines are in the CL-GD546X device itself. The blocks shown as dotted lines are outside the
CL-GD546X device.

The graphics subsystem provides a visible rectangular display mapped onto a rectangular mem-
ory space. This memory space is the frame buffer. In the CL-GD546X the frame buffer is imple-
mented using RDRAMs.

On the input side of the frame buffer is the system CPU, a standard SVGA controller, a 2D engine,
a 3D engine (CL-GD5464 only), and an enhanced V-Port™ video bus interface. On the output side
of the frame buffer is the RAMDAC, which in turn drives the monitor.

The CRTC controller generates the display timing, providing horizontal and vertical synchroniza-
tion terms for the monitor and display refresh requests to the frame buffer. The CRTC controller
also provides a video blanking to the RAMDAC.

Copyright 1996 – Cirrus Logic Inc. 1-3 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

The RAMDAC maps memory contents to RGB color values. The frame buffer contains a descrip-
tion of each pixel on the screen. The format of the pixel descriptions in the frame buffer can be
palettized, RGB, or YUV. In some cases, the frame buffer contains pixels in two formats.

Also available on the system bus are a set of standard VESA VBE 2.0 BIOS software routines for
implementing the VESA SVGA standard, and for initializing and testing the system.

Finally, the CL-GD546X has a set of PCI Configuration registers.

Figure 1-1. Graphics System Based on the CL-GD546X

1.1.2 Internal Architecture

Figure 1-2 is a conceptual diagram of the internal architecture of the CL-GD546X. It is imple-
mented around two internal buses. The host bus is shown in the diagram as HIFBUS and the
memory bus is shown in the diagram as RIFBUS. The HIFBUS is connected to the external host
bus through the host interface module. The RIFBUS is connected to the Rambus channel through
a RIF (Rambus interface) and RAC (Rambus access channel). The host interface module syn-
chronizes the external bus clock to the internal memory clock. Both the HIFBUS and RIFBUS are
synchronous to the internal memory clock (nominally 62.5 MHz).

SVGA VESA BIOS

PCI CONFIGURATION REGISTERS

SERIAL (I2C) BUS INTERFACE DDC2B

ENHANCED V-Port™ INTERFACE V-Port™

2D ENGINE

SVGA

PALETTE
RAMDAC

RDRAM
FRAME
BUFFER

CRTC
SYNCS

RGB

S
Y

S
T

E
M

 B
U

S

GPI/O INTERFACE

G
E

N
E

R
A

L
-P

U
R

P
O

S
E

 I/
O

 P
O

R
T

3D ENGINE

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-4 Copyright 1996 – Cirrus Logic Inc.

The functional sections of the CL-GD546X are connected to one or both of these buses. Each sec-
tion is described briefly in the following paragraphs.

The 2D graphics engine provides acceleration for three operand raster operations as well as
stretch operations. The graphics engine operates synchronously to the memory clock. It can pro-
duce one result qword for each memory clock.

The 3D graphics engine provides rendering acceleration for 3D bit-mapped polygon. It is
described in the

 Chapter 3, “3D Programmer’s Guide

”of this manual.

The VGA module provides VGA compatible host read/write access to the frame buffer as well as
VGA functions. In addition, it contains a number of I/O registers and decodes.

The extended read/write module provides host read/write access to a linear frame buffer. This
module also contains Memory-Mapped registers and some address decoding. An additional mod-
ule, the address translate module, provides register decodes for the display path and display FIFO
sections.

The display module contains the display pipeline, the YUV-to-RGB color space converter, the color
palette, and the DACs. The display FIFO module contains the FIFO and FIFO controller, the dis-
play address generator, and the hardware cursor address generator.

The V-Port™ module contains the V-Port data packing and FIFO logic. The V-Port provides a
mechanism for transferring video data from a peripheral decoder to the users’ display. Video data
is input to the frame buffer and then modified under program control before being output to the
monitor. Alternatively, video data can be routed directly to the DAC, bypassing the frame buffer
altogether. These two modes are called memory attach, and DAC attach. The video data stream
can be in any standard format such as RGB or YUV. Video timing is provided by the external
decoder or by the CL-GD546X.

The general-purpose I/O port can be programmed to communicate with a variety of I/O devices.
It has a configurable interface specification allowing it to support many bus timings.

Copyright 1996 – Cirrus Logic Inc. 1-5 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

Figure 1-2. CL-GD546X Internal Architecture

1.2 Programming Model

This section covers three of the four CL-GD546X programming models: a super VGA controller,
an advanced 2D accelerator, and a flat frame buffer. The 3D programming model is described in
the

Chapter 3, “3D Programmer’s Guide

”of this specification.

The super VGA controller is programmed like any compatible VGA by I/O registers and the display
memory mapped into the A0000h–BFFFFh address range on the host. The 2D accelerator pro-
vides hardware assisted drawing operations to the frame buffer and is accessed by Memory-
Mapped registers. The flat-frame buffer is controlled by Memory-Mapped registers and is
accessed through 8-Mbyte apertures in the host memory address space. Bi-endian support is pro-
vided for the 2D accelerator and flat-frame buffer modes of operation.

1.2.1 VGA

The CL-GD546X VGA module provides compatibility with earlier graphics controllers based on
VGA. Refer to the

Laguna VisualMedia



 Accelerators Family — CL-GD546X Volume I (Hardware
Reference Manual, Second Edition, September 1996,

“VGA Core Registers” chapter for additional
information.

The control unit contains the immediate and general registers, the drawing control and the com-
mand/data FIFO. The pixel path contains the three operand fetch units (OFU0, OFU1, OFU2), the
ROPs unit, the transparency control, and the pixel FIFO. The frame buffer consists of 1, 2, 4 or 8
Mbytes of Rambus RDRAM memory.

HOST

D
IS

P
L

A
Y

F
IF

O

V
G

A

E
X

T
E

N
D

E
D

R

D
W

R

2D
/3

D
 E

N
G

IN
E

V
-P

o
rt

™

V-Port™

RGB

DISPLAY
DATA

START
ADDRESS

HIFBUS

RIFBUS

ADDRESS
TRANSLATE

WINDOWS

REGISTERS

RIF/RAC

P
IP

E
L

IN
E

INTERFACE

G
P

I/O

IN
T

E
R

F
A

C
E

L
O

C
A

L
 P

E
R

IP
H

E
R

A
L

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-6 Copyright 1996 – Cirrus Logic Inc.

Writes to the immediate registers take effect immediately and do not go through the write FIFO.
These are used to read 2D engine status and write general control information. Writes to the gen-
eral registers are queued through the 25-entry write FIFO and are used to set drawing parameters
and initiate drawing operations. During a BitBLT operation, color pixel data is loaded into SRAM0.
Color and/or monochrome pixel data is loaded into SRAM1 and SRAM2. Monochrome data is
converted to color using the foreground and background color registers. Color pixel data is aligned
with the destination. Then the three operands are combined in the ROPs unit to form the output
pixel data that can be stored in the frame buffer, sent to the host, or stored in one SRAM. If pixel
transparency is enabled, SRAM2 is used as the transparency mask. For monochrome masks, the
output pixel is written if the corresponding bit in SRAM2 is ‘1’. For color masks, the output pixel is
written if the corresponding pixel in SRAM2 compares with the background color. (The compari-
son can be programmed to be ‘equal’ or ‘not-equal’.) SRAM0 is typically the destination operand,
SRAM1 is typically the source operand, and SRAM2 is typically the pattern operand.

1.2.1.1 2D Frame Buffer

The 2D frame buffer is organized as a rectangular array of packed pixels, with pixel ‘0,0’ at the
upper left-hand corner and pixel ‘xmax,ymax’ at the lower right-hand corner. A rectangular portion
of the frame buffer (the display rectangle) is visible on the display device. In the upper left-hand
corner is pixel ‘xs,ys’ and in the lower right-hand corner is pixel ‘xe,ye’ (0

≤

 xs

<

 xe

≤

 xmax, 0

≤

 ys

<

 ye

≤

 ymax). The display rectangle is shown in relation to the frame buffer in Figure 1-3. The dis-
play rectangle is typically aligned to the upper left corner of the display buffer (xs = 0, ys = 0), but
can be positioned anywhere on the frame buffer surface. Pixel sizes of 8, 16, 24, and 32 bits are
supported (see Section 1.2.2). Pixel addresses given to the 2D engine are always specified in two
dimensional ‘x,y’ coordinates.

Figure 1-3. 2D Frame Buffer

1.2.1.2 Flat Frame Buffer

The CL-GD546X frame buffer can be accessed directly by software from the host computer. As
described earlier, the frame buffer is organized as a rectangular array of packed pixels, with pixel
‘0,0’ at the upper left-hand corner, and pixel ‘xmax,ymax’ at the lower right-hand corner.
(xmax = screen_pitch/pixel_size; ymax = {frame_buffer_size/screen_pitch}/pixel_size; where
pixel_size = 1, 2, 3, or 4.) The screen pitch is the number of bytes between vertically adjacent pix-

DISPLAY
RECTANGLE

FRAME BUFFER

INCREASING x

INCREASING y

PIXEL ‘xs,ys’

PIXEL ‘0,0’

PIXEL ‘xe,ye’

PIXEL ‘xmax,ymax’

Copyright 1996 – Cirrus Logic Inc. 1-7 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

els. A rectangular portion of the frame buffer (the raster) is visible on the display device. The upper-
left corner of the raster is pixel ‘xs,ys’ and the lower-left corner of the raster is pixel ‘xe,ye’. The
upper-left corner of the raster is typically aligned with pixel ‘0,0’, where there is undisplayed off-
screen memory to the right of and below the raster. The raster is shown in relation to the frame
buffer in Figure 1-3.

Pixel sizes of 8, 16, 24, and 32 bits are supported (see Section 1.2.2). The frame buffer is
accessed by host software as a linear array of bytes, words, or double words, with pixel ‘0,0’
located at byte offset 0 in the frame buffer. In general, the byte address of pixel ‘x,y’ is given as:

Equation 1-1

The frame buffer is mapped into the host CPUs address space by Base Address Register 1. It is
mapped into four contiguous 8-Mbyte apertures on a 32-Mbyte address boundary. The first aper-
ture directly accesses the frame buffer without byte swapping. The second aperture swaps bytes
within words. The third and fourth apertures swap bytes within double-words. Byte swapping is dis-
cussed in Section 1.2.3.

1.2.2 Pixels

A pixel is a picture element on the external display surface. Each pixel on the display surface maps
uniquely to a pixel data structure in the frame buffer memory array. Pixels in the frame buffer are
either 8-, 16-, 24-, or 32-bits wide, and contain data that specifies to the display pipeline how to
set the color of its corresponding picture element on the display surface. Color modes define how
the display pipeline interprets the contents of the pixel. Most conventional graphics display sys-
tems allow one mode for the entire frame buffer (and display surface). The CL-GD546X allows two
modes simultaneously, a graphics mode and a video mode. Table 1-1 lists the color modes and
indicates the modes that can be paired. (Video windows within the frame buffer can have a Video
Color mode different from the Background Graphics Color mode.) The color modes are selected
by setting the depth and format fields in the Graphics/Video Format register (MMI/O offset C0h).

a

Video modes.

Table 1-1. Color Mode Pairing Options

Option
Number

Graphics and
Video Modes

Concurrent
Video Option

Depth
Field

Format
Field

1 8-bpp Palette 1, 2, 3, 4, 5 00b 000b

2 8-bpp Grayscale 1, 2, 3, 4, 5 00b 001b

3 8-bpp AccuPak

a

n/a 00b 100b

4 16-bpp 5:6:5 4, 5 01b 010b

5 16-bpp YUV 4:2:2

a

n/a 01b 101b

6 24-bpp 8:8:8 6, 7 10b 010b

7 24-bpp YUV 4:4:4

a

n/a 10b 110b

8 32-bpp a:8:8:8 7, 8 11b 010b

byte_addr y screen_ pitch×() x pixel_size×()+()=

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-8 Copyright 1996 – Cirrus Logic Inc.

1.2.2.1 8-bpp Palettized

Each pixel is specified by one byte of display memory. The value of the byte is used to look up an
entry in the color palette. If gamma correction is not enabled, three 6-bit values (one each for Red,
Green, and Blue) are passed to the corresponding DACs for conversion to analog. If gamma cor-
rection is enabled, three 8-bit values are passed to the DACs for conversion to analog.

When the corresponding depth field is programmed to ‘00b’ and the corresponding format field is
programmed to ‘000b’, 8-bpp palettized is selected.

1.2.2.2 8-bpp Grayscale

Each pixel is specified by one byte of display memory. If gamma correction is not enabled, the
value passes to all three DACs in parallel for conversion to analog. The result is a gray pixel, whose
luminance corresponds to the value of the byte.

If gamma correction is enabled, the value is used to look up the three corresponding entries in the
color palette. The three 8-bit values pass to the corresponding DACs for conversion to analog. In
this case, the hardware behaves like 8-bpp palettized with gamma correction enabled. However,
the palette is programmed differently.

When the corresponding depth field is programmed to ‘00b’ and the corresponding format field is
programmed to ‘001b’, 8-bpp grayscale is selected.

1.2.2.3 8-bpp AccuPak



Each group of four adjacent pixels is specified by four adjacent bytes of display memory. The for-
mat of each packet is as shown in the following diagram. The luminance of each pixel is specified
by five bits; the chrominance values are specified by six bits each. The four pixels share a common
chrominance. If gamma correction is not enabled, the packet converts to four pixels of RGB val-
ues. This involves interpolation and color space conversion. The RGB values for each pixel pass
to the respective DACs for conversion to analog.

If gamma correction is enabled, the packet is converted to four pixels of RGB values. For each
pixel, the RGB values are independently used to look up values in the palette. The resulting values
are passed to respective DACs for conversion to analog.

7 6 5 4 3 2 1 0

COLOR VALUE

7 6 5 4 3 2 1 0

GRAYSCALE VALUE

Copyright 1996 – Cirrus Logic Inc. 1-9 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

8-bpp AccuPak is selected when the corresponding depth field is programmed to ‘00b’ and the
corresponding format field is programmed to ‘100b’.

1.2.2.4 16-bpp 5:6:5

Two adjacent bytes of display memory specify each pixel. The format of each pixel is shown in the
following diagram. If gamma correction is not enabled, the three color values are left aligned and
passed to the respective DACs for conversion to analog.

If gamma correction is enabled, the three color values are extended to eight bits each by append-
ing zeroes. The resulting three 8-bit values are independently used to look up three values in the
color palette. The resulting three 8-bit values are passed to the corresponding DACs for conver-
sion to analog.

16-bpp 5:6:5 is selected by programming the corresponding depth field to ‘01b’ and the corre-
sponding format field to ‘010b’.

1.2.2.5 16-bpp 5:5:5

Two adjacent bytes of display memory specify each pixel. The format of each pixel is shown in the
following diagram. If gamma correction is not enabled, the three color values are left aligned and
passed to the respective DACs for conversion to analog.

If gamma correction is enabled, the three color values are extended to eight bits each by append-
ing zeros. The resulting three 8-bit values are independently used to look up three values in the
color palette. The resulting three 8-bit values are passed to the corresponding DACs for conver-
sion to analog.

16-bpp 5:5:5 is selected by programming the corresponding depth field to ‘01b’ and the corre-
sponding format field to ‘011b’.

Y3 Y2 Y1 Y0 U0 V0

31:27 26:22 21:17 16:12 11:6 5:0

15 11 10 5 4 0

RED GREEN BLUE

15 10 9 5 4 0

RED GREEN BLUE

14

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-10 Copyright 1996 – Cirrus Logic Inc.

1.2.2.6 16-bpp YUV 4:2:2

Four adjacent bytes of display memory specify each packet of two adjacent pixels. The format of
each packet of two pixels is as shown in the following diagram. If gamma correction is not enabled,
the packet converts to two pixels of RGB values. This involves interpolation and color space con-
version. The RGB values for each pixel are passed to the DACs for conversion to analog.

If gamma correction is enabled, the packet is converted to two pixels of RGB values. For each pixel
the RGB values are independently used to look up values in the palette. The resulting values are
passed to respective DACs for conversion to analog.

16-bpp YUV 4:2:2 is selected by programming the corresponding depth field to ‘01b’ and the cor-
responding format field to ‘101b’.

1.2.2.7 24-bpp 8:8:8

Each pixel is specified by three adjacent bytes of display memory. The format of each pixel is as
shown in the following diagram. If gamma correction is not enabled, the color values for each pixel
are passed to the respective DACs for conversion to analog.

If gamma correction is enabled, the color values for each pixel are independently used to look up
values in the color palette. The results are passed to the respective DACs for conversion to analog.

24-bpp 8:8:8 is selected when the corresponding depth field is programmed to ‘10b’ and the cor-
responding format field is programmed to ‘010b’.

1.2.2.8 24-bpp YUV 4:4:4

Each pixel is specified by three adjacent bytes of display memory. The format of each pixel is as
shown in the following diagram. If gamma correction is not enabled, the pixel is converted to RGB.
This involves color-space conversion.

If gamma correction is enabled, the pixel is converted to RGB. The RGB values are independently
used to look up values in the palette. The resulting values are passed to respective DACs for con-
version to analog.

Y1 V0 Y0 U0

31 24 23 16 15 8 7 0

23 16 15 8 7 0

RED GREEN BLUE

Copyright 1996 – Cirrus Logic Inc. 1-11 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

24-bpp YUV 4:4:4 is selected when the corresponding depth is programmed to ‘10b’ and the cor-
responding format is programmed to ‘110b’.

1.2.2.9 32-bpp a:8:8:8

Each pixel is specified by four adjacent bytes of display memory. The format of each pixel is as
shown in the following diagram. If gamma correction is not enabled, the color values for each pixel
are passed to the respective DACs for conversion to analog.

If gamma correction is enabled, the color values for each pixel are independently used to look up
values in the color palette. The results are passed to the respective DACs for conversion to analog.

24-bpp a:8:8:8 is selected when the corresponding depth field is programmed to ‘11b’ and the cor-
responding format field is programmed to ‘010b’.

1.2.3 Bi-endian Support

To support operation in a PowerPC PCI system, the CL-GD546X provides byte swapping logic in
the host interface. The PowerPC and the PCI bridge perform the swapping required to support
byte data. Data types that are larger than a single byte, such as 16-, 24-, and 32-bpp graphics
data, require further alignment. Therefore, the frame buffer, host data port, and Memory-Mapped
registers each have four different address maps or ‘apertures’. This allows the application software
to control the data alignment depending on the pixel depth. In Table 1-2, the first aperture (1) per-
forms no swapping, the second aperture (2) swaps bytes within words, and the third (3) and fourth
(4) apertures swap bytes within double-words.

23 16 15 8 7 0

V Y U

23 16 15 8 7 0

RED GREEN BLUE

31 24

ALPHA

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-12 Copyright 1996 – Cirrus Logic Inc.

Table 1-2. Byte Swapping for Bi-Endian Support

Aperture Swap Diagram

Base
address No swap

Base
address plus

4 Kbytes
Word swap

Base
address plus

8 Kbytes
Dword swap

Base
address plus

12 Kbytes
Dword swap

Processor Bus 0 1 2 3

0 1 2 3Frame Buffer

Processor Bus 0 1 2 3

0 1 2 3Frame Buffer

Processor Bus 0 1 2 3

0 1 2 3Frame Buffer

Processor Bus 0 1 2 3

0 1 2 3Frame Buffer

Copyright 1996 – Cirrus Logic Inc. 1-13 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

1.3 Bus Model

This section describes the programming of the bus model of the CL-GD546X. It has sixteen 32-
bit registers that control device mapping and bus configuration. These registers are visible in either
PCI configuration space or memory-mapped I/O space. Of the 16 Configuration registers, read or
set up the registers listed in Table 1-3.

In PCI Bus mode, register configuration is handled by the system BIOS.

1.3.1 Accessing Registers

The PCI configuration registers are accessed through PCI BIOS calls. (Reference the

PCI BIOS
Specification

, Revision 2.1, August 26, 1994.)

The physical address of the Memory-Mapped register is accessed in PCI mode by reading
BASE_ADDRESS_0.

1.3.2 Managing the Memory-Mapped Register

To manage the Memory-Mapped register in PCI mode, BASE_ADDRESS_0 is set up to request
4 Kbytes of memory above 1 Mbyte. This is an issue if the programmer wants to program in real-
mode, where the programmer must map the registers into the first Mbyte. To solve this problem,
the VGA BIOS dynamically maps the registers in the A0000h–BFFFFh range when it needs to use
these registers. An example sequence is as following:

;--

;

; SetMemMap()

;

; Function: Determine where in Memory to Map our Memory Mapped
Registers

;

; Entry: bp - Points to right spot on stack

; Exit: bp - 0c has Old Memory Mode Set

; bp - 8 has new segment address

; bp - 6 has bus and device number

Table 1-3. PCI Register Offsets

Register PCI Offset
Memory-Mapped Offset

(from BASE_ADDRESS_0)

Command 04h 304h

Sub-Class 0Ah 30Ah

Base_Address_0 (Memory-Mapped) 10h 310h

Base_Address_1 (Frame Buffer) 14h 314h

ROM Base 30h 330h

VS_Control FCh 3FCh

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-14 Copyright 1996 – Cirrus Logic Inc.

; BAR0 - maps register < 1M in VGA hole <A0000-BFFFF>

;

;--

MemSeg dd BAR_B800, BAR_B800, BAR_A000, BAR_A000

SetMemMap proc near

push eax

push bx

push ecx

push dx

push di

push si

push ds

IFDEF PCI

call Look4ActPCI ; Get PCI Address

mov BUSDEVNUM, bx ; Save Bus Number

mov di, MEMREG ; Memory Map
Registers

mov ax,PCI_RDW ; Read Double
Word

int PCI_INT ; PCI Interrupt

mov eax, ecx ; Get Result

ELSE

mov dx, VL_BAR ; VL BAR

.386

in eax, dx ; Get Old Address

ENDIF

mov OLDMAPADDR, eax ; Save it

ASSUME ds:VGA_Data_Area

UBAR:

push dx

push si

mov dx, GFXIDX ; Get GR06

mov al, 06h

call getreg ; read it

xchg ah, al ; data in al

xor ah, ah ; Clear ah

and al, 0Ch ; Mask Bits

mov si, OFFSET MemSeg

add si, ax

mov eax, cs:[si]

pop si

Copyright 1996 – Cirrus Logic Inc. 1-15 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

pop dx

BAR_FIX:

IFDEF PCI

mov ecx, eax ; Get Value to
Write

mov ax, PCI_WDW ; Write Double
Word

int PCI_INT ; Do it

mov eax, ecx ; Restore eax

ELSE

out dx, eax

ENDIF

shr eax, 4 ; Get Segment

mov MEMMAPSEG, ax ; Save Offset

pop ds

pop si

pop di

pop dx

pop ecx

pop bx

pop eax

ret

SetMemMap endp

;--

To restore the address, use the following example code:

;--

;

; ClrMemMap()

;

; Function: Clears Memory Map

; Entry: bp - Points to right spot on
stack

; bp - 8 Memory Mapped Sement

; bp - c Old Memory Mapped
Sement

; Exit: BAR0 - Points to Old Memory
Mapped Address

;

;--

ClrMemMap proc near

push eax ; Save eax

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-16 Copyright 1996 – Cirrus Logic Inc.

push ds ; Save ds

IFDEF PCI

push si

push di

push bx

push ecx

call Look4ActPCI ; Get PCI Address

mov BUSDEVNUM, bx ; Save Bus Number

mov di, MEMREG ; Memory Map
Registers

mov ax,PCI_WDW ; Read Double
Word

mov ecx, OLDMAPADDR ; Get Result

int PCI_INT ; PCI Interrupt

pop ecx

pop bx

pop di

pop si

ELSE

push dx

mov dx, VL_BAR

mov eax, OLDMAPADDR ; Get Old Value

out dx, eax

pop dx

ENDIF

pop ds ; Restore ds

pop eax ; Restore eax

ret

ClrMemMap endp

Copyright 1996 – Cirrus Logic Inc. 1-17 September 1996

CL-GD546X Software Technical Reference Manual

OVERVIEW

1.3.3 Initializing Configuration Registers

The registers listed in Table 1-4 are initialized at POST time.

1.3.4 VGA Sleep Mode

To disable memory and I/O access, the CL-GD546X Command register is initialized to zero by the
hardware reset. The CL-GD546X does not respond to any memory or I/O accesses after reset in
PCI mode. This is used to enable or disable the CL-GD546X VGA in PCI mode.

1.4 Memory Organization

This section covers the organization of the memories and register spaces in the CL-GD546X.

The four memory spaces are shown on the left of Figure 1-4. The Frame Buffer can be addressed
using four apertures of 8 Mbytes each. The base address is programmed into the PCI Base 1 reg-
ister. The four apertures provide byte swapping. The memory-mapped I/O provides access to
most registers with two sets of four apertures of 4 Kbytes each (32 Kbytes total). The base address
is programmed into the PCI Base 0 register. The expansion ROM is addressed with a single
32-Kbyte space. The base address is programmed into the PCI Expansion ROM Base Address
register. The standard VGA window into the frame buffer is fixed at A0000h–BFFFFh.

Table 1-4. Initializing Registers at POST Time

Register PCI Mode

Command The PCI System BIOS initializes.

Base_Address_0 The PCI System BIOS initializes to above 1 Mbyte.

Base_Address_1 The PCI System BIOS initializes to above 1 Mbyte.

ROM Base The PCI System BIOS initializes to C0000h.

VS_Control The VGA BIOS initializes to 01003401h.

OVERVIEW

CL-GD546X Software Technical Reference Manual

September 1996 1-18 Copyright 1996 – Cirrus Logic Inc.

The standard VGA registers are accessible at 3B0h–3BBh, 3C0h–3C2, and 3C4h–3DFh.

Figure 1-4. Memory and I/O Spaces (Not to Scale)

1.4.1 Frame Buffer Linear Addressing

The frame buffer can be accessed by the host as a linear string with an extent of 32 Mbytes. Pro-
gram the base address of the frame buffer into PCI14, Frame Buffer Base Address register
(described in the

Laguna VisualMedia



 Accelerators Family — CL-GD546X Volume I (Hardware
Reference Manual, Second Edition, September 1996)). This is the Frame Buffer Base Address
register.

The 32-Mbyte address space is made of four apertures. Each aperture allows direct access to all
8 Mbytes of frame buffer memory possible on the CL-GD546X. The difference in the four apertures
is the way bytes are swapped. The last two apertures are the same. Refer to Table 1-2 on page 1-
12.

1.4.2 Frame Buffer Addressing: VGA Compatibility

The CL-GD546X is capable of addressing up to 8 Mbytes of display memory. In the DOS environ-
ment there are 128 Kbytes of memory space at A0000h–BFFFFh reserved for display memory.
Since the VGA has to share this memory with MDA, Hercules, or CGA, it is left with the single 64-
Kbyte segment from A0000h–AFFFFh.

The CL-GD546X supports single- and dual-paging display memory addressing schemes that
allow mapping of two 32-Kbyte segments, or one 64-Kbyte segment of display memory into CPU
address space. Only the first Mbyte is accessible with VGA compatibility addressing. Byte swap-
ping is not available with VGA compatibility addressing. This addressing mode is retained only for

A0000h
BFFFFh

FRAME BUFFER:

MEMORY-MAPPED I/O:
TWO SETS OF FOUR APERTURES

FOUR APERTURES,

EXPANSION ROM

VGA FRAME BUFFER

3DFh

3BBh
3B0h

3C0h

VGA REGISTERS

VGA REGISTERS

PCI BASE 1

PCI BASE 0

PCI EXPANSION
ROM BASE (32 KBYTES)

(128 KBYTES)

(4 KBYTES EACH)

8 MBYTES EACH

Copyright 1996 – Cirrus Logic Inc. 1-19 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

compatibility with the Alpine family. Readers interested in this topic should refer to the Alpine 
VGA Family Technical Reference Manual.

1.4.3 Linear and Tiled Modes

The frame buffer memory organization is available in either linear or tiled format. The frame buffer
interface logic handles the linear/tiled translation and the translation is transparent to the program-
mer. Reading and writing data through the linear frame buffer aperture does not require the pro-
grammer to make any special allowances for the tiled or linear configuration of memory. Since
graphics source objects (patterns, fonts, masks) can be placed on tiled boundaries and accessed
in a minimal number of page-crossing fetches, there are significant performance enhancements
that are realized by using tiled mode. Statistically, most BitBLTs (such as text) fit within small rect-
angles that are smaller than a tile, and do not cause excessive page breaks during operand fetch-
ing and result writes.

The Rambus memory is physically organized as a set of 2048-byte pages. The number of pages
is dependent on how much physical memory is in the display adapter (1 Mbyte, 2 Mbytes, and so
on up to 8 Mbytes). The memory pages can be mapped to the frame buffer as lines (Linear mode),
or as tiles (Tiled mode). By maximizing the number of fetches from a page once it has been
enabled, minimum memory fetch latency can be achieved. The pages called tiles, can be orga-
nized in one of the three ways:

1) 2048 by 1 is referred to as Linear mode.

2) 128 by 16 is referred to as Narrow Tiled mode.

3) 256 by 8 is referred to as Wide Tiled mode.

For example, if the programmer configures for 640 × 480 at 16-bpp no interleave (IL = 1), the X,Y
to memory address translations, for the first tile in the frame buffer, are as designated in Table 1-5.

There are restrictions on the use of Tiled mode. Do not use the tiled configuration in VGA modes.
It can only be used in accelerated modes that rely on the 2D engine. Programmers relying on the
Cirrus Logic BIOS do not have to concern themselves with these implications as the BIOS takes
care of managing the tiling configuration during a mode switch. After making a BIOS mode switch

Table 1-5. Tile Modes

Address Linear (X,Y) Narrow (X,Y) Wide (X,Y)

0 0,0 0,0 0,0

126 63,0 63,0 63,0

128 64,0 0,1 64,0

254 126,0 63,1 126,0

256 128,0 0,1

510 255,0 126,1

1278 639,0

1280 0,1

2046 383,1 63,15 126,7

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-20 Copyright 1996 – Cirrus Logic Inc.

call Set_Video_Mode, the programmer should call Enable_Tiled_Mode to configure for Tiled
mode. If the number of tiles per scanline is not evenly divisible into the total number of tiles in the
memory, then tiling creates an artifact in the off-screen memory map. This causes the last row of
tiles to be incomplete. This last row of tiles in memory can be accessed by XY coordinates as nor-
mal. It can still be accessed by the linear frame buffer interface. However, use caution as the ‘miss-
ing’ tiles creates a rectangular gap in the address map in the lower-right corner of the frame buffer
(see Section 1.4.3.3).

1.4.3.1 Programming Considerations

The programming of Linear versus Tiled mode is covered in the Chapter 5, “System Operation”.
It is also possible to request the VGA BIOS to do it. This is done by the following code sequence:

Mode Switch

<i.e. INT 10, ah=0, al = Valid Cirrus Logic Mode Number>

Tile Mode

<i.e. INT 10, ah=12h, bl=b3h >

1.4.3.2 Linear versus Tiled Restrictions

When deciding whether to use linear versus tiled formats, be aware of certain restrictions:

1) Optimal performance of the 2D engine is achieved by using the Tiled mode.

2) Packed Pixel VGA modes are not compatible with the Tiled mode.

3) In some modes organized with the Tiled mode, not all of off-screen memory is simple to use by the linear
frame buffer interface, due to translation optimizations (see Section 1.4.3.3).

1.4.3.3 Off-Screen Memory Problems

Some memory addresses near the maximum frame buffer address translate to invalid physical
memory addresses in Tiled mode. The formula for calculating the lowest invalid linear address is
as following:

Where

n_rows is the number of complete interleaved tile rows (not counting any partial row of tiles at the end of
the frame buffer.

il_row_height is the interleaved row height = (2048 / tile_width) x interleave [1, 2, or 4].
rem_tiles is the number of (interleaved groups of) tiles in the last partial row of tiles (can be zero).
tile_width is the tile width in bytes [128 or 256].

For example, use a 1-Mbyte frame buffer configured for 640 × 480 at 16 bpp, n_tiles = 5,
interleave = 0 no interleave, and wide_tile = 1 (256 bytes). If the programmer is not using tiled
memory, the maximum physical linear address would be FFFFFh. If the programmer uses tiles,
there are 512 tiles to allocate in rows of five per scanline. This means that tiles 0–509 form a sim-
ple contiguous region up to address FEFFFh. Tiles 510 and 511 form a partial row starting at
FF000h–FF1FFh, continuing at FF500h–FF6FFh all the way to 101300h–1014FFh. Addresses
FF200h–FF4FFh, FF700h–FF9FFh, and so on do not correspond to physical memory. Data writes
to these addresses and above are lost. Data reads from these addresses are undefined.

lowest_invalid_linear_addr n_rows il_row_height×() rem_tiles tile_width×()+()=

Copyright 1996 – Cirrus Logic Inc. 1-21 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

The following function documents the algorithm for calculating the off-screen areas. This includes
the size and location of the last row rectangle, which can be an artifact of tiling. The function refers
to four rectangles that comprise the frame buffer memory. These four rectangles are the visible
rectangle displayed in the upper-left portion of memory, the right rectangle, the bottom rectangle,
and the extra rectangle. The right and left rectangles are the classically available regions of off-
screen memory. The extra rectangle is an artifact of tiling that appears to dangle from the lower
left of memory in some configurations.

/***

**

*

* **

* * Copyright (c) 1995, Cirrus Logic, Inc. *

* * All Rights Reserved *

* **

*

* PROJECT: CL-GD546X

*

* FILE: 5462mem.c

*

* DESCRIPTION: Calculates off screen areas based on
memory
* configuration.

*

***/

/*------------------- DEFINES -----------------------------------*/

#define TRUE -1

#define FALSE 0

#define ILLEGALTILECONFIG -1

/*------------------- TYPES -------------------------------------*/

typedef unsigned long ULONG;

/***

* FUNCTION NAME: Lookup_Tiles_Per_Line()

* DESCRIPTION: lookup tiles per line based on tile width

* and X extent

***/

int Lookup_Tiles_Per_Line(ulTileWidth, ulXExtentBytes)

ULONG ulTileWidth;

ULONG ulXExtentBytes;

{

ULONG TilesPerLine = ILLEGALTILECONFIG;

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-22 Copyright 1996 – Cirrus Logic Inc.

if (128 == ulTileWidth) {

if (4096 < ulXExtentBytes)

return (ILLEGALTILECONFIG);

if (4096 >= ulXExtentBytes TilesPerLine = 32;

if (3328 >= ulXExtentBytes TilesPerLine = 26;

if (2560 >= ulXExtentBytes TilesPerLine = 20;

if (2048 >= ulXExtentBytes TilesPerLine = 16;

if (1664 >= ulXExtentBytes TilesPerLine = 13;

if (1280 >= ulXExtentBytes TilesPerLine = 10;

if (1024 >= ulXExtentBytes TilesPerLine = 8;

if (640 >= ulXExtentBytes TilesPerLine = 5;

} else if (256 == ulTileWidth) {

if (2 * 4096 < ulXExtentBytes)

return (ILLEGALTILECONFIG);

if (2 * 4096 >= ulXExtentBytes TilesPerLine = 32;

if (2 * 3328 >= ulXExtentBytes TilesPerLine = 26;

if (2 * 2560 >= ulXExtentBytes TilesPerLine = 20;

if (2 * 2048 >= ulXExtentBytes TilesPerLine = 16;

if (2 * 1664 >= ulXExtentBytes TilesPerLine = 13;

if (2 * 1280 >= ulXExtentBytes TilesPerLine = 10;

if (2 * 1024 >= ulXExtentBytes TilesPerLine = 8;

if (2 * 640 >= ulXExtentBytes TilesPerLine = 5;

} else /* ulTileWidth = 2048, aka untiled */

return (ILLEGALTILECONFIG);

return TilesPerLine;

}

/***

* FUNCTION NAME: Legal_Interleave()

* DESCRIPTION: validate interleave against memory size.

***/

int

Legal_Interleave(MegaBytes, Interleave)

int MegaBytes;

int Interleave;

{

// Legal Memory Size and Interleave combinations are:

// IL = 1, MEG = 1, 2, 3, 4, 5, 6, 7, 8

// IL = 2, MEG = 2, 4, 6, 8

Copyright 1996 – Cirrus Logic Inc. 1-23 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

// IL = 4, MEG = 4, 8

return ((MegaBytes % Interleave) ? FALSE : TRUE);

}

/***

* FUNCTION NAME: main()

* DESCRIPTION: Calculate off screen areas based on memory
* configuration.

***/

void main(void)

{

ULONG MegaBytesInstalled = -1;

ULONG MemorySizeInBytes = -1;

ULONG MemoryInterleave = -1;

ULONG TileWidth = -1;

ULONG BytesPerTile = 2048;

ULONG BitsPerPixel = -1;

ULONG X_Extent = -1;

ULONG Y_Extent = -1;

ULONG X_Extent_Bytes = -1;

ULONG TileHeightInLines = -1;

ULONG TilesPerLine = -1;

ULONG BytesPerLine = -1;

ULONG ExtraMemory = -1;

ULONG AvailableMemory = -1;

ULONG NumberOfRows = -1;

ULONG VisibleRectangle = -1;

ULONG VisibleRectangle_SizeInBytes = 0;

ULONG VisibleRectangleMemReqd = 0;

ULONG RightHandRectangle = -1;

ULONG RightHandRectangle_x0 = 0;

ULONG RightHandRectangle_y0 = 0;

ULONG RightHandRectangle_X_Extent = 0;

ULONG RightHandRectangle_Y_Extent = 0;

ULONG RightHandRectangle_SizeInBytes = 0;

ULONG BottomRectangle = -1;

ULONG BottomRectangle_x0 = 0;

ULONG BottomRectangle_y0 = 0;

ULONG BottomRectangle_X_Extent = 0;

ULONG BottomRectangle_Y_Extent = 0;

ULONG BottomRectangle_SizeInBytes = 0;

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-24 Copyright 1996 – Cirrus Logic Inc.

ULONG ExtraRectangle = -1;

ULONG ExtraRectangle_x0 = 0;

ULONG ExtraRectangle_y0 = 0;

ULONG ExtraRectangle_X_Extent = 0;

ULONG ExtraRectangle_Y_Extent = 0;

ULONG ExtraRectangle_SizeInBytes = 0;

ULONG ExtraRectangle_NumberOfTiles = 0;

int im, memsizes[] = {8, 4, 3, 2, 1, 0};

int xi = 0;

ULONG XE[5] = {640, 800, 1024, 1280, 1600};

ULONG YE[5] = {480, 600, 768, 1024, 1200};

for (xi = 0; xi < 5; xi++) {

/* 640, 800, 1024, 1280, 1600 */

X_Extent = XE[xi];

Y_Extent = YE[xi];

for (BitsPerPixel = 8; BitsPerPixel <= 32;

BitsPerPixel += 8) {

/* 8, 16, 24, 32 */

for (im = 0; memsizes[im] != 0; im++) {

MegaBytesInstalled = memsizes[im];

for (TileWidth= 128; TileWidth<= 256; TileWidth += 128) {

/* 256, 128 */

for (MemoryInterleave = 1; MemoryInterleave <= 4;

MemoryInterleave *= 2) {

/* 1, 2, 4 */

VisibleRectangle = FALSE;

VisibleRectangle_SizeInBytes = 0;

VisibleRectangleMemReqd = 0;

RightHandRectangle = FALSE;

RightHandRectangle_x0 = 0;

RightHandRectangle_y0 = 0;

RightHandRectangle_X_Extent = 0;

RightHandRectangle_Y_Extent = 0;

RightHandRectangle_SizeInBytes = 0;

Copyright 1996 – Cirrus Logic Inc. 1-25 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

BottomRectangle = FALSE;

BottomRectangle_x0 = 0;

BottomRectangle_y0 = 0;

BottomRectangle_X_Extent = 0;

BottomRectangle_Y_Extent = 0;

BottomRectangle_SizeInBytes = 0;

ExtraRectangle = FALSE;

ExtraRectangle_x0 = 0;

ExtraRectangle_y0 = 0;

ExtraRectangle_X_Extent = 0;

ExtraRectangle_Y_Extent = 0;

ExtraRectangle_SizeInBytes = 0;

ExtraRectangle_NumberOfTiles = 0;

MemorySizeInBytes = MegaBytesInstalled *

1024l * 1024l;

X_Extent_Bytes = X_Extent * (BitsPerPixel /
8);

VisibleRectangle_SizeInBytes = X_Extent_Bytes *

Y_Extent;

TileHeightInLines = BytesPerTile / TileWidth;

TilesPerLine = Lookup_Tiles_Per_Line(

TileWidth, X_Extent_Bytes);

BytesPerLine = TilesPerLine * TileWidth;

VisibleRectangleMemReqd = BytesPerLine * Y_Extent;

if ((TilesPerLine != ILLEGALTILECONFIG) &&

// too big to fit in maximum tiles per line

// (MemorySizeInBytes > VisibleRectangleMemReqd) &&

// not enough memory (Legal_Interleave
// (MegaBytesInstalled, MemoryInterleave))

// illegal interleave/memsize combination

) {

// Calculate if any memory exists in “extra”

// rectangle at lower left corner of memory space.

ExtraMemory =
MemorySizeInBytes %

(TilesPerLine *

BytesPerTile *

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-26 Copyright 1996 – Cirrus Logic Inc.

MemoryInterleave);

AvailableMemory =
MemorySizeInBytes -

ExtraMemory;

NumberOfRows = AvailableMemory /
BytesPerLine;

VisibleRectangle = (VisibleRectangle-
MemReqd < MemorySizeIn-
Bytes) ? TRUE : FALSE;

RightHandRectangle = (X_Extent_Bytes <

BytesPerLine) ?
TRUE : FALSE;

if (RightHandRectangle) {

RightHandRectangle_x0 = X_Extent_Bytes;

RightHandRectangle_y0 = 0;

RightHandRectangle_X_Extent =

BytesPerLine -
X_Extent_Bytes;

RightHandRectangle_Y_Extent = Y_Extent;

RightHandRectangle_SizeInBytes =

RightHandRectangle_X_Extent
*

RightHandRectangle_Y_Extent;

}

BottomRectangle = (VisibleRectangleMemReqd <

MemorySizeInBytes) ? TRUE : FALSE;

if (BottomRectangle) {

BottomRectangle_x0 = 0;

BottomRectangle_y0 = Y_Extent;

BottomRectangle_X_Extent = BytesPerLine;

BottomRectangle_Y_Extent =

(AvailableMemory-
VisibleRectangleMemReqd) /

BytesPerLine;

BottomRectangle_SizeInBytes =

BottomRectangle_X_Extent *

BottomRectangle_Y_Extent;

}

ExtraRectangle = (ExtraMemory > 0) ?

TRUE : FALSE;

if (ExtraRectangle) {

Copyright 1996 – Cirrus Logic Inc. 1-27 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

ExtraRectangle_x0 = 0;

ExtraRectangle_y0 =
Y_Extent + BottomRectangle_Y_Extent;

ExtraRectangle_Y_Extent = MemoryInterleave *

TileHeightInLines;

ExtraRectangle_X_Extent = ExtraMemory /

ExtraRectangle_Y_Extent;

ExtraRectangle_SizeInBytes =

ExtraRectangle_Y_Extent *

ExtraRectangle_X_Extent;

ExtraRectangle_NumberOfTiles = ExtraMemory /

BytesPerTile;

}

} //endif (valid config)

} } } } }

}

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-28 Copyright 1996 – Cirrus Logic Inc.

1.4.4 Registers

The CL-GD546X Memory-Mapped registers are listed in Table 1-6.

Table 1-6. CL-GD546X Memory-Mapped Registers

Byte Lane

Offset 3 2 1 0

0 Horizontal Total

4 Horizontal Display End

8 Horizontal Blanking Start

C Horizontal Blanking End

10 Horizontal Sync Start

14 Horizontal Sync End

18 Vertical Total

1C Overflow

20 Screen A Preset Row Scan

24 Character Cell Height

28 Text Cursor Start

2C Text Cursor End

30 Screen Start Address High

34 Screen Start Address Low

38 Text Cursor Location High

3C Text Cursor Location Low

40 Vertical Sync Start

44 Vertical Sync End

48 Vertical Display End

4C Offset

50 Underline Row Scanline

54 Vertical Blanking Start

58 Vertical Blanking End

5C Mode Control

60 Line Compare

64 Interlace End

68 Miscellaneous Control

6C Extended Display Controls

70

Copyright 1996 – Cirrus Logic Inc. 1-29 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

74 Screen Start Addr Extension

78 Vertical Total Extension

7C

80 Miscellaneous Output

84 VCLK3 Numerator

88 VCLK3 Denominator

8C MCLK Select

90 Signature Generator Control

94 Signature Result Low Byte

98 Signature Result High Byte

9C

A0 Palette Mask

A4 Palette Read Address/State

A8 Palette Write Address

AC Palette Data

B0 Palette State

B4 External Overlay

B8 Color Key

BC Color Key Mask

C0 Format

C4

C8 START_BLT_3 STOP_BLT_3

CC Y_START_2 X_START_2

D0 Y_END_2 X_END_2

D4 START_BLT_2 STOP_BLT_2

D8

DC START_BLT_1 STOP_BLT_1

E0 CURSOR_Y CURSOR_X

E4 CURSOR_CONTROL CURSOR_PRESET

E8 Display Threshold and Tiling Cursor Location

EC

Table 1-6. CL-GD546X Memory-Mapped Registers (cont.)

Byte Lane

Offset 3 2 1 0

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-30 Copyright 1996 – Cirrus Logic Inc.

F0 TEST_HT TEST

F4 TEST_VT

F8 Reserved for Test

FC Reserved for Test

100 X Start (Even) X Start (Odd)

104 Y Start (Even) Y Start (Odd)

108 V-Port Height V-Port Width

10C V-Port Mode 0

110:1FC

200 RAC Control RIF Control

204 Rambus Transaction

208:23C

240:27C Rambus Data

280 Serial Port

284:2FC

300 Device ID Vendor ID

304 Status Command

308 Class Code Revision ID

30C Header Type

310 Base Address 0

314 Base Address 1

318:328

32C Subsystem ID Subsystem Vendor ID

330 Expansion ROM Base

334:338

33C Interrupt Pin Interrupt Line

340:3F4

3F8 VGA_Shadow

3FC VS_Control

400 CONTROL STATUS

404 TILE_CTRL TIMEOUT OFFSET_2D QFREEE

Table 1-6. CL-GD546X Memory-Mapped Registers (cont.)

Byte Lane

Offset 3 2 1 0

Copyright 1996 – Cirrus Logic Inc. 1-31 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

408 RESIZEA_opRDRAM

40C RESIZEB_opRDRAM

410 RESIZEC_opRDRAM

414:47C

480 COMMAND

484:4FC

500 MAJY MINY

504 ACCUMY

508 MAJX MINX

50C LNCNTL ACCUMX

510 CHROMA_CNTL STRETCH_CNTL

514:51C

520 OP0_opRDRAM

524 OP0_opMRDRAM

528 PATOFF OP0_opSRAM

52C:53C

540 OP1_opRDRAM

544 OP1_opMRDRAM

548 OP1_opMSRAM OP1_opSRAM

54C:55C

560 OP2_opRDRAM

564 OP2_opMRDRAM

568 OP2_opMSRAM OP2_opSRAM

56C:57C

580 SHRINKINC SRCX

584 BLTDEF DRAWDEF

588 MONOQW

58C:5D
C

5E0 OP_opFGCOLOR / ALPHA_{A,B}

5E4 OP_opBGCOLOR

Table 1-6. CL-GD546X Memory-Mapped Registers (cont.)

Byte Lane

Offset 3 2 1 0

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-32 Copyright 1996 – Cirrus Logic Inc.

1.4.4.1 Memory-Mapped I/O

Most registers in the CL-GD546X are accessed using memory-mapped I/O. There is a 16-Kbyte
extent, comprising four 4-Kbyte apertures. Program the base address into PCI10: MMI/O Base
Address register.

The registers that are accessible using memory-mapped I/O are described in the Laguna
VisualMedia  Accelerators Family — CL-GD546X Volume I (Hardware Reference Manual, Sec-
ond Edition, September 1996). The MMI/O offset for each register is given in the register descrip-
tion, and in the summary table at the beginning of each chapter.

The four apertures of the memory-mapped I/O address space control byte swapping. This works
just the same as frame buffer access.

5E8 BITMASK

5EC TAGMASK

5F0 CHROMA_LOWER

5F4 CHROMA_UPPER

5F8:5FC

600 BLTEXT_XEX

604 BLTEXTFF_XEX

608 BLTEXTR_XEX

60C BLTEXT_LN_EX

610:61C

620 MBLTEXT_XEX

624

628 MBLTEXTR_XEX

62C:6FC

700 BLTEXT_EX

704 BLTEXTFF_EX

708 BLTEXTR_EX

70C:71C

720 MBLTEXT_EX

724

728 MBLTEXTR_EX

72C:7FC

Table 1-6. CL-GD546X Memory-Mapped Registers (cont.)

Byte Lane

Offset 3 2 1 0

Copyright 1996 – Cirrus Logic Inc. 1-33 September 1996

CL-GD546X Software Technical Reference Manual OVERVIEW

1.4.4.2 I/O Mapped Registers

The VGA Core registers are accessible using normal I/O. These registers are described in the
Laguna VisualMedia  Accelerators Family — CL-GD546X Volume I (Hardware Reference Man-
ual, Second Edition, September 1996). The I/O Mapped registers have fixed addresses. Nearly all
the I/O addresses are standard VGA. A few registers are accessible both in the memory space
and the I/O space. Most of these registers are in the CRT Controller and each have addresses in
the appropriate columns of the summary tables in each chapter.

1.4.5 SRAM

The CL-GD546X uses SRAM caches and queues extensively to enhance performance. It
increases parallel processing and minimizes frame-buffer memory accesses. The primary pur-
pose of the operand SRAMs is to optimize hardware performance. The programmer can explicitly
use the SRAM for improving performance, but should exercise caution.

The SRAMs of interest, to the programmer, are the three 128-byte caches (two 128-byte and one
1024-byte on the CL-GD546X) associated with each operand fetch unit. The BitBLT engine auto-
matically caches fetched data from the frame buffer or host in these SRAMs and performs the ras-
ter operations. Under software control, the programmer can specify these SRAMs as source,
pattern, or destination operands. The programmer can also specify these SRAMs as the result of
the raster operation.

The programmer can specify the SRAM as source or result of a BitBLT by setting up the BLTDEF
register. The SRAM cannot be a source or destination for a stretch or shrink BitBLT. The BLTDEF
register OP1 and OP2 fields can be programmed for monochrome or color data that is fetched
from SRAM. The fetched data can be pattern data if it is monochrome, 8- or 16-bit color. Color
pattern data that is 24- and 32-bit does not fit into the 128 bytes of SRAM assigned to each oper-
and fetch unit. The OP2 SRAM data can be used for transparency masking by setting the trans-
parency control bits in the DRAWDEF register.

The OPn_opSRAM registers are pixel pointers when written, and byte pointers when read back.
The OPn_opMSRAM registers are bit pointers and read back as written. The OPn_opSRAM and
OPn_opMSRAM registers are physically the same registers within the CL-GD546X. Values that
are written to one access name affect the values read back by the other access name.

Any of the three SRAMs can be designated as the result of a BitBLT operation by setting the
BD_Res field in BLTDEF. SRAM 1 and SRAM 2 can also be designated as a common result des-
tination with the OP0_opRDRAM.pt.X pointer designating the result offset within the SRAMs. This
results in a halving of the number of RDRAM fetches required for filling the SRAMs. This can be
useful when common transparency and monochrome-to-color masks are used in the next opera-
tion.

When doing explicit SRAM source or destination operations use caution to disable auto-BitBLTs.
Since the auto-BitBLT can intervene between programmed BitBLT operations and change the
contents of SRAM, unexpected results can occur.

OVERVIEW CL-GD546X Software Technical Reference Manual

September 1996 1-34 Copyright 1996 – Cirrus Logic Inc.

	Table of Contents
	1. OVERVIEW
	Reading and Using the Programming Examples
	1.1 Architectural Overview
	1.1.1 System Block Diagrams
	1.1.2 Internal Architecture

	1.2 Programming Model
	1.2.1 VGA
	1.2.1.1 2D Frame Buffer
	1.2.1.2 Flat Frame Buffer

	1.2.2 Pixels
	1.2.2.1 8-bpp Palettized
	1.2.2.2 8-bpp Grayscale
	1.2.2.3 8-bpp AccuPak‰
	1.2.2.4 16-bpp 5:6:5
	1.2.2.5 16-bpp 5:5:5
	1.2.2.6 16-bpp YUV 4:2:2
	1.2.2.7 24-bpp 8:8:8
	1.2.2.8 24-bpp YUV 4:4:4
	1.2.2.9 32-bpp a:8:8:8

	1.2.3 Bi-endian Support

	1.3 Bus Model
	1.3.1 Accessing Registers
	1.3.2 Managing the Memory-Mapped Register
	1.3.3 Initializing Configuration Registers
	1.3.4 VGA Sleep Mode

	1.4 Memory Organization
	1.4.1 Frame Buffer Linear Addressing
	1.4.2 Frame Buffer Addressing: VGA Compatibility
	1.4.3 Linear and Tiled Modes
	1.4.3.1 Programming Considerations
	1.4.3.2 Linear versus Tiled Restrictions
	1.4.3.3 Off-Screen Memory Problems

	1.4.4 Registers
	1.4.4.1 Memory-Mapped I/O
	1.4.4.2 I/O Mapped Registers

	1.4.5 SRAM

	2. 2D Programmer's Guide
	3. 3D Programmer's Guide
	4. Video Programming
	5. System Operation
	6. BIOS Specification
	Index
	Sales Offices/Company Information
	Reader Response Card

