3D Programmer’s Guide

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.1

3.1.1

3D PROGRAMMER'’S GUIDE

This chapter presents the information necessary to program 3D functions on the CL-GD5464 (the
CL-GD5462 does not incorporate a 3D engine). The 3D rendering engine can draw polygons with
Gouraud shading, alpha blending, Z-buffering, and texture mapping. Autonomous execution from
a display list and a rich instruction set combine to minimize the load on the host while rendering
3D scenes.

The registers used by the 3D engine are covered in the Laguna VisualMediall Accelerators Fam-
ily — CL-GD546X Volume | (Hardware Reference Manual, Second Edition, September 1996).
These registers are all accessible in memory-mapped I/O space, with or without byte swapping.
When the engine is running in Display List mode, these registers are loaded from the display list
by the engine.

Architectural Overview

This section provides a brief overview of the CL-GD5464 graphics system from a programmer’s
point of view. It begins with an overall system block diagram that covers the entire graphics sys-
tem. This is followed with a block diagram showing a conceptual view of the CL-GD5464.

System Block Diagrams

Figure 3-1 shows a graphics subsystem based on the CL-GD5464. The blocks shown as solid
lines are in the CL-GD5464 device. The blocks shown as dotted lines are outside the CL-GD5464
device.

The graphics subsystem provides a visible rectangular display mapped onto a rectangular mem-
ory space. This memory space is the frame buffer. The frame buffer is implemented using
RDRAMSs.

On the input side of the frame buffer is a standard SVGA controller, a 2D/3D engine, a direct
frame-buffer interface unit, and a V-PortO video bus interface. On the output side of the frame
buffer is the RAMDAC, which in turn drives the monitor.

The CRTC controller generates the display timing, providing horizontal and vertical synchroniza-
tion terms for the monitor and display refresh requests to the frame buffer. The CRTC controller
also provides a blanking term to the RAMDAC.

The RAMDAC maps memory contents to RGB color values. The frame buffer contains a descrip-
tion of each pixel on the screen. It can also contain an off-screen color buffer, Z buffer, and texture
maps. The format of the pixel and texel descriptions in the frame buffer can be palletized, RGB, or
YUV. The frame buffer can contain pixels in more than one format.

The various blocks within the CL-GD5464 can be programmed by the CPU via the PCI bus inter-
face. Alternately, the CL-GD5464 can become a PCI bus master under the control of the prefetch
unit to fetch instructions and parameters from host system memory. The HostXY unit can also ini-
tiate bus master operation to fetch texture maps or render a color buffer and Z buffer to host mem-
ory.

Also available on the PCI bus are a set of standard VESA VBE v2.0 BIOS software routines for
implementing the VESA SVGA standard, and for initializing and testing the system.

Finally, the CL-GD5464 has a set of PCI Configuration registers.

September 1996 3-2 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

< _»| CrTC > SYNCS
S <«—>»| svGA e :
1 1
v r—n . RDRAM Voo
= Lo < »| 2DBD | 51 FRAME A |
| O |I<_>I 1 ENGINE 1 BUFFER 1 PALETTE
1 1 Ly —»RGB
: : : 1 1 1 RAMDAC
1 1 1
oot Lo | PREFETCH/ e -
D! <> HOSTXY
! 1 [l |
1 | 1 1
A »| DIRECT FB INTERFACE ro
|E : @ : o :
:2 . g 1 8 1
r==1 = -
L g < > V-Portd INTERFACE <« > VPortd ! Q!
1 1 | 1wy
:% : : ! 1 8 |
'E 1 1 : g !
= . SERIAL (2C) BUS INTERFACE ~ [«—»DDC2B ! & !
1 i . a
'E ! 1 : = :
:i_ ! ! ! 1 é 1
D! o < > GPI/O INTERFACE B —— R TR
'2 1 \ ! L&
Yo 1 ! NG
1O o] 1 1
PI < »| PCI CONFIGURATION REGISTERS - |
bm o -
e = = === - - - 1
|
<« », SVGAVESAUBIOS |
L e e e o e o o o e o o - -

Figure 3-1. Graphics System Based on the CL-GD5464

Copyright 1996 — Cirrus Logic Inc. 3-3 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.1.2

Internal Architecture

Figure 3-2 is a conceptual diagram of the internal architecture of the CL-GD5464. It is imple-
mented around two internal buses. The host bus is shown as HIFBUS and the memory bus is
shown as RIFBUS. The HIFBUS is connected to the external PCI bus through the host interface
module. The RIFBUS is connected to the Rambus channel through a RIF (Rambus interface) and
RAC (Rambus access channel). The host interface module synchronizes the external bus clock to
the internal memory clock. Both the HIFBUS and RIFBUS are synchronous to the internal mem-
ory clock (nominally 62.5 MHz).

The functional modules of the CL-GD5464 are connected to one or both of these buses. The host
interface and 2D/3D modules are described in the following sections. Descriptions of the remain-
ing modules can be found in the Chapter 2, “2D Programmer’s Guide”.

PCI BUS
HOST
INTERFACE
HIFBUS I
V-PORT™
WINDOWS
REGISTERS
—
Y Y Y y Y 2
DISPLAY g w u
> w [a)] < 3 I
z w o - o
<Z| DATA | o < og > £ of x
[EETT) LL (O] Z L o R4 L
wa T > wa a Q S a
[ajrey ; ™ < = _
- w a Z 6
RGB o o}
-
AlA A
START Y
ADDRESS »| ADDRESS
TRANSLATE
RIFBUS
RIF/RAC

RAMBUSUY CHANNEL

Figure 3-2. CL-GD5464 Internal Architecture

September 1996 34 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.1.2.1 Host Interface

The host interface provides a PCI v2.1 compliant target and bus master interface, functional units
to permit the CL-GD5464 to behave as a graphics processor with its own instruction set, and an
interface to the internal HIF bus.

Figure 3-3 presents the functional units of the host interface. The command queue, read queue,
bi-endian swap logic (for writes and reads), address decoder, and PCI control (target) units pro-
vide PCIl-compliant target transfers of data to or from the CL-GD5464. The prefetch unit and the
PCI control (master) unit use PCI bus master cycles to fetch display list instructions and parame-
ters from host system memory. Similarly, the HostXY and PCI control (master) units allow reads
of textures maps stored in host memory and rendering (reads and writes) of a color buffer and Z
buffer to host memory.

The 8 x 43 command queue allows the CL-GD5464, when acting as a PCI target, to release the
host as soon as the transaction parameters have been recorded. This enables the host and media
accelerator to operate with a high degree of parallelism.

The host address bus (specifically the address phase of the multiplexed AD bus) enters the
address decoder where the CL-GD5464 determines if it is the target of the transaction about to
occur. If it is the target of the transaction, the appropriate acknowledge lines are activated by the
bus control block and the address is placed in the command queue along with a tag value that
indicates the transaction type.

Entries are removed from the command queue and passed on to the appropriate internal block for
execution. If the command queue is full, the bus control unit inserts wait cycles until one or more
free entries are available.

Read transactions must be executed by the CL-GD546X before the host can be released (since
the data must be made available to the host). Generally, this requires a number of wait states. For
BIOS reads, up to 4 bytes are assembled into the read queue before the data is placed on the
data bus and the host is released.

The prefetch unit is responsible for the fetch and pre-decode of display list instructions from host
memory. Rendering instructions are forwarded to the 2D/3D engine by the command queue. Con-
trol instructions are executed immediately by the prefetch unit. Internal interrupt or wait events
such as a display buffer switch or a vsync are handled by this unit to achieve maximum animation
performance.

The HostXY unit translates texture or pixel transactions from the 2D/3D Engine into PCI bus mas-
ter transactions to the host memory and checks that the addresses are in a valid range. Pixel or
Z data writes are queued in the read queue for optimal performance.

Copyright 1996 — Cirrus Logic Inc. 3-5 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

Both the prefetch and HostXY units contain virtual-to-physical address translation logic that reads
a translation table from host memory.

Bi-endian swaps (dword or word) can occur (as needed) on data passing in either direction
through the host interface.

The general-purpose 1/O port is closely integrated with the host interface. If the CL-GD5464 is
configured for general-purpose I/O port, accesses to a specific range of memory-mapped /O off-
sets are converted into accesses to the local peripheral.

PCI A

BUS GENERAL-PURPOSE /0 PORT ¢———|
| GPIIO |a—>
A EPROM DATA -
I
DATA |
< BUS | BI-ENDIAN » i
| A SWAP s
2 > COMMAND >
PDORESS « QUEUE
- » <
8 x 43
| Y
I
ADDRESS SELECTS -
I DECODER > »
|
A
I READ
| B QUEUE
BI-ENDIAN [+
| SWAP | 8 x 36 -
| \j A
! < HOSTXY
[PCI BUS UNIT -
BUS CONTROL >
CONTROLS (SLAVE)
< I »r— — — 1% INTERNAL
| PCIBUS |« BUS
CONTROL -
v »| PREFETCH
! (MASTER) <—>»| ONIT

Figure 3-3. Host Interface Block Diagram

September 1996 3-6 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.1.2.2 2D/3D Engine

HIFBUS
HIF INTERFACE
Y
o 3D INSTRUCTION B WRITE
= DECODE AND EXECUTE [FIFO »
\i
TEXTURE Y
INTERPOLATORS

A »(AND TEXEL CACHE SRAM2
zk CONTROL
< .
it =

o Ll
o & o | w © Y
=5 ok [3z | Z z
&2 oo | 2 | & o |2 > SRAM1
= c3 123 |E|Y
0 O |t |Y |l | o [=

w |l Sa | 4 T SRAMO
X E X Z ™ 3
= < < <
Y Y Y
2D PIXEL PATH
RESULT
FIFO
Y
MEMORY CONTROL UNIT

RIFBUS

|
\
|
\

g >

RIF/RAC

FRAME BUFFER

Figure 3-4. 2D/3D Graphics Engine Model and Data Flow

Copyright 1996 — Cirrus Logic Inc. 3-7 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.2

3.2.1

3.2.2

3D Programming Model

There are three mechanisms for programming the 3D engine. These methods are described in the
section summarized in Table 3-1.

Table 3-1. 3D Programming Modes

Programming Mode Section
Direct Programming Section 3.2.1
Coprocessor Indirect Programming Section 3.2.2
Display List Programming Section 3.2.3

The actual instructions and instruction formats are similar regardless of the mode being used. Bits
5:0 of drawing instructions are set to ‘0’ for Direct programming (since the registers have already
been loaded). Also, the Branch and Idle instructions are used only to enter and exit Display List
mode.

Direct Programming

In Direct Programming mode, registers are loaded, typically by writing directly to them in the reg-
ister address space beginning at 0x4000. The 3D engine must be idle while the registers are being
loaded. When the appropriate registers have been loaded, the engine is started by writing a draw-
ing instruction to the OPCODE_3D register at 0x40FC. The engine executes a single instruction
and then stops. This method is also known as the Coprocessor Direct method.

Direct programming is often used to see the effect of a single instruction without the possibility of
the interference of additional instructions. This would allow one to ‘single-step’ through a display
list.

Direct programming is the slowest method of initializing the device state and issuing drawing com-
mands. It should be used for initialization and situations where time is not a constraint. No PCI
burst transfers occur when direct programming is being used.

Flow control instructions, data movement instructions, and the like are generally not available in
the Direct Programming mode.

Coprocessor Indirect Programming

In the Coprocessor Indirect Programming mode, instructions and data can be transferred across
the PCI bus by writing to offsets 0x4800 through 0x4BFC. To execute a 3D Draw instruction in
Coprocessor Indirect mode, execute a Write_Register instruction to Host_3D_Data_Port at MMIO
offset 0x4800. The data transferred during the next group of A 32-bit writes are written beginning
at register address M, where A and M are values in the Write_Register instruction.

This mode is intended as a test mode and is not recommended for normal operation.

September 1996 3-8 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.2.3

3.2.4

3.3

Display List Programming

This is the preferred mode for programming the CL-GD5464. Display list allows the most concur-
rence between the host and graphics processor. Display list also allows PCI bursting and bus mas-
tering. The CL-GD5464 is optimized for operation in this mode.

In Display List Programming (or Instruction Fetch) mode, the CL-GD5464 fetches instructions and
register values from system memory. The instruction list can include load instructions that set up
control registers for drawing as well as the drawing instructions themselves. A complete drawing
instruction takes the form of the draw opcode followed by a sequence of parameters that define
the region to be drawn, its color and texture, and other characteristics.

When all the register values required for an instruction have been fetched and loaded, the instruc-
tion itself is executed (some instructions do not require any register values). The CL-GD5464 is
put into instruction fetch mode by the execution of a BRANCH instruction (the instruction is written
to the PF_INST_3D register at 0x4480). Usually the CL-GD5464 exits Display List mode by the
execution of an IDLE instruction. The PF_CTL_3D register at 0x4404 has bits that control pausing
and instruction fetching. The PF_STATUS_ 3D register at 0x4424 returns the status of the 3D
engine.

The host must build the display list (instruction/register values) in system memory prior to starting
the 3D engine. Once started, the engine proceeds autonomously until it encounters an IDLE
instruction. The INT instruction can be used to report intermediate progress. The INT instruction
causes a pause in display list execution, requiring the application to restart execution. This is done
by writing a RET instruction to the PF_INST_3D register.

Host Memory-Based Formats

TBD

3D Rendering Overview

The following sections discuss 3D rendering as it is done on the CL-GD5464. First, the DDA (dig-
ital differential analyzer) is reviewed. Rendering of a flat polygon is covered to introduce the
method used by the CL-GD5464. Then, shaded coloring (Gouraud shading) of the polygon is
explained. Methods of clipping and masking are covered. Finally, lighting, alpha blending, and tex-
ture mapping are covered.

Figure 3-5 is a simplified block diagram of the 3D engine. The polygon interpolator determines the
pixels that fall within the polygon and includes the color (RGB) interpolators. This runs in parallel
with the texture interpolator and its cache. X-Y clipping, the depth comparison logic (hidden sur-
face removal), and destination masking all are used to determine whether pixels are actually writ-

Copyright 1996 — Cirrus Logic Inc. 3-9 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.3.1

ten. The pixels that are actually written go through the lighting and saturate stages, through the
alpha blending stage to determine their final color, and are then written.

TEXTURE SRAM?2
POLYGON, RGB
INTERPOLATOR -
INTERPOLATORS AND CACHE
P A— X-Y CLIPPING, Z-CLIPPING,
SRAMO, 1 DESTINATION MASKING,

—> TEXTURE MASKING

LIGHTING AND SATURATE STAGE

ALPHA BLENDING AND FOG STAGE

Figure 3-5. Simplified Block Diagram of 3D Engine

Incremental Line-Drawing Algorithm

The straight line is the basis of all objects drawn by the 3D engine. To understand how lines are
drawn (or more properly, how pixels along a line are selected), one must first understand the incre-
mental line-drawing algorithm or DDA (digital differential analyzer). All modern line-drawing
engines use incremental line-drawing algorithms since they are well understood and well suited
to evaluation with adders. Bresenham’s Algorithm is an example of a DDA that is especially well
suited to integer arithmetic.

An incremental algorithm begins at the starting point and proceeds for some number of iterations,
calculating the location of a single pixel for each iteration. For each iteration, an increment or delta
is added to each coordinate to calculate the location of the next pixel in the line. The number of
iterations is the number of points in the line or the distance to be spanned.

The axis whose span is greater is called the step or major axis. For rendering into a discrete bit
map, the increment for the major axis is always set to unity. Exactly one pixel is drawn in each
scanline (for a Y-major line) or column (for an X-major line). There is no sense in calculating posi-
tions between pixels (in the major axis). On the other hand, a dense line requires that pixels be
drawn just as close together as possible.

The increment for the other axis (the axis that is not the major axis) is the span for that axis divided
by the number of iterations (steps in the major axis). For lines drawn at 45 degrees, this is unity.
For any other angle, the increment for the minor axis is a proper fraction.

Figure 3-6 shows a line whose major axisisY. The Y increment is unity (every pixel along the major
axis is plotted). The X increment is some fraction whose value depends on the exact slope of the
line. In this example, the actual value is somewhat less than two-fourths (a change of four pixels
along the Y axis is accompanied by a change of somewhat less than two in the X axis). Pixels are
plotted which most nearly correspond to the theoretical line.

September 1996 3-10 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

(M ‘ \ (M (M (M
UV UV UV UV

Y INCREMENT = UNITY
(M (M ‘ (M (M
UV UV UV UV

THEORETICAL LINE
(M (M A\ (N
UV UV /) UV

-
4
(]
4

N (N . A\ N
% N J %
(N (N N , N
\ \ ¢ ¢
—>»! l«— XINCREMENT

Figure 3-6. Incremental Line-Drawing Algorithm

In addition to calculating the position of a pixel, DDAs are also used to calculate the color, depth,
of the pixel, as seen.

See Section 3.3.16 on page 3-30 for information on drawing lines using the CL-GD5464.

Copyright 1996 — Cirrus Logic Inc. 3-11 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.3.2 Flat (Unshaded) Polygon

The CL-GD5464 can fill polygons that are random triangles of any orientation or quadrangles with
at least one flat top or bottom. The CL-GD5464 fills polygons by evaluating two (sometimes more
than two) incremental algorithms in parallel. Figure 3-7 illustrates a random triangle. It will be seen
that quadrangles with a flat top or bottom constitute an extension.

Set aside trivial triangles and co-linear triangles (they are either points or lines). That is, consider
only triangles with three unique vertices that are not all on a straight line.

Any triangle, regardless of its orientation, can be reduced to two triangles with a common horizon-
tal side. In particular, if the three vertices are sorted vertically, the common side is horizontally in
line with the center (or opposite) vertex. The side of the triangle opposite this center vertex always
spans the entire height of the triangle. This side is called the main slope. By definition, each side
of any triangle, including the main slope, is a straight line.

Once a random triangle has been reduced to two triangular areas that are each guaranteed to
have a horizontal side, it can be filled in two stages. Refer to Figure 3-7. In the first stage, Area 1
is filled, beginning at the Base vertex and working down, one scanline at a time, to the common
horizontal side. In the second stage, Area 2 is filled, beginning at the common horizontal side and
working down, one scanline at time, to the bottom vertex.

& —— BASE VERTEX

-€«—— MAIN SLOPE

OPPOSITE
VERTEX — > ST~ — — 33 — — — —

BOTTOM (END)

COMMON -€«— VERTEX

HORIZONTAL SIDE

Figure 3-7. Two Triangles with Horizontal Side

September 1996 3-12 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

For each stage, two parallel DDAs are used. This is illustrated in Figure 3-8. One DDA finds the
main slope and the other DDA finds the width. The major axis is always Y, regardless of the orien-
tation of the main slope. This is an important difference from the DDA described in Section 3.3.1
and requires that the X delta be able to be larger than unity.

The Y-span of Area 1 is specified inY_COUNT_3D[26:16]. This is an unsigned integer. The base
point is always at the lowest Y address in the triangle (the closest to the top of the screen). The X
delta is specified in DX_MAIN_3D. This is a signed real number. Since the X delta is signed, the
main slope can proceed either down and to the right or down and to the left.

The second DDA finds the width of the triangle. The width delta is specified in DWIDTH1_3D. This
is a signed real number. Since it is signed, the width can either increase or decrease (in practice,
it always increases in Area 1 of the triangle and decreases in Area 2). Figure 3-8 shows how
DWIDTH depends on both the slope of the main slope and the opposite slope. More precisely, the
opposite slope is determined by DX_MAIN and DWIDTH.

The triangle is filled a scanline at a time. For each scanline, beginning at the base, the correspond-
ing X point along the main slope is found. Then pixels are filled, along the scanline, to the current
width. The DDAs are incremented, calculating the next X point along the main slope, and the next
width. This continues for COUNTL1 + 1 scanlines (specified in Y_COUNT _3D [26:16]), filling in
Area 1 of the random triangle.

Filling in the triangle a scanline at a time is efficient in terms of memory cycle usage and compu-
tationally.

BASE VERTEX

~«— DX_MAIN

MAIN SLOPE

/V
DWIDTH1

Figure 3-8. DDAs for Main Slope and Width

Copyright 1996 — Cirrus Logic Inc. 3-13 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

When the engine has filled in Area 1, it selects a new delta width constant from DWIDTH2_3D (the
second delta width is nearly always negative) and continues for COUNT2 (Y_COUNT_3D_[10:0])
scanlines, filling in Area 2. In Figure 3-9, the DWIDTH2 value is negative. The triangle becomes
more narrow as Area 2 is filled, coming to a point at the very bottom.

COUNT1

-€—— MAIN SLOPE

COUNT2

Figure 3-9. Completing the Triangle: Area 2

Observe that the main slope does not have an inflection point in it. DX_MAIN does not change
when the new DWIDTH value is loaded.

If the Count2 field is zero, only Area 1 is drawn, resulting in a triangle that is flat on the bottom.

September 1996 3-14 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.3.3

3.3.4

Summary of Values Used for Flat Triangle

Table 3-2 summarizes the values required for drawing a flat triangle. In the range column, the
notation ‘. X’ indicates a 16-bit fraction. The formal description of these registers is in the Laguna
VisualMediall Accelerators Family — CL-GD546X Volume | (Hardware Reference Manual, Sec-
ond Edition, September 1996).

Table 3-2. Values Used for Flat Triangle

Value Rﬁglrit:r Rggflss:r Range Note
Beginning X co-ordinate X_3D 0x4000 0to 2047.X Bit 31 is X-direction
Beginning Y co-ordinate Y_3D 0x4004 0 to 2047.X
Red color value R-3D 0x4008 0 to 255.X
Green color value G_3D 0x400C 0 to 255.X Skip if palettized
Blue color value B_3D 0x4010 0 to 255.X Skip if palettized
Main Slope X increment DX_MAIN_3D 0x4014 —2048.X to 2047.X
Y-Count for Area 1 Y_COUNT_3D 0x4018 0 to 2047 Bits 26:16
Y-Count for Area 2 Y_COUNT_3D 0x4018 0 to 2047 Bits 10:0
Width increment for Area 1 DWIDTH1 3D 0x4024 —2048.X to 2047.X
Width increment for Area 2 DWIDTH2_3D 0x4028 —2048.X to 2047.X

These are the values the 3D engine has to have to draw a flat triangle. To draw a triangle in Copro-
cessor mode, these registers would be loaded and the engine started. To draw a triangle in Display
List mode, the instruction is followed by N register values, where N is specified in the draw instruc-
tion.

Scaled Numbers

Most of the values listed in Table 3-2 are real numbers (they have an integer part and a fractional
part). In each case where the value has a fractional part, it is scaled so that the radix point is
between bit position 15 and bit position 16. Even though these are real numbers, the radix point
is fixed and fixed point adders can be used. This is important both for gate count and speed con-
siderations.

27:23 16 15 0

INTEGER PART FRACTIONAL PART

e o

SIGN EXTENSION
OR CONTROLS

Figure 3-10. Real Number Scaling

Copyright 1996 — Cirrus Logic Inc. 3-15 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.3.5

Several of these registers have flags or control bits. Sign bits must be written into all unused bits.
The control bits in these registers are summarized in Table 3-3.

Table 3-3. Control Bits

Register Bit Position Use
X_3D 31 X Direction: Polygon drawn to left or right from main slope
X_3D 30 Left Edge Disable: Do not draw left pixel in each scanline
X_3D 29 Right Edge Disable: Do not draw right pixel in each scanline
Y_3D 30 Top Edge Disable: Do not draw top pixel or scanline
Y_3D 29 Bottom Edge Disable: Do not draw bottom pixel or scanline

X_3DJ[31] controls whether the triangle is drawn to the left or the right of the main slope. This, in
conjunction with the sign of the DX_MAIN_3D, determines the orientation of the triangle. All four
cases are used. Figure 3-11 shows the four cases. The base point is at the top. The main slope is
drawn as the heavy line in each case.

DX NEGATIVE DX NEGATIVE DX POSITIVE DX POSITIVE
DRAW RIGHT DRAW LEFT DRAW RIGHT DRAW LEFT

L7 NN

Figure 3-11. DX Sign, Draw Left/Draw Right

The four edge disables are used when triangles abut. If two adjacent triangles are drawn with
blending, visible artifacts can result along their common edge if both write that common edge. By
suppressing one of the two from writing the edge, these artifacts can be prevented.

Gouraud Shading

In addition to flat triangles, the CL-GD5464 can draw triangles with Gouraud shading. Gouraud
shading uses linear interpolation, readily adaptable to a DDA. The application provides color val-
ues at the vertices, which are converted to register values by the 3D driver supplied by Cirrus
Logic. This process is called ‘triangle setup’.

There are a total of nine values that are involved with shading, three values for each of the three
colors: Red, Green, and Blue. Each color has its base value, and its Delta_Main and Delta_Ortho
values. Each base value is an unsigned number and each delta is a signed number. As usual, the
radix point for each is between bit position 15 and bit position 16.

September 1996 3-16 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

The color for each pixel along the main slope is calculated by incrementing the base color by the
delta_main for each Y increment. This is exactly analogous to the calculation of the X value along
the main slope. Now, as the scanline is filled, the color for each pixel is calculated by incrementing
the color at the main slope by the Delta_Ortho. Since each delta for each color is signed, each
color can change smoothly in two dimensions. This is illustrated in Figure 3-12 for Red. The other
two colors are exactly the same, except different registers contain the constants.

Gouraud shading is enabled by programming bit 12 of the drawing instruction (that is DRAW_LINE
or DRAW_POLY) to ‘1". If Gouraud shading is enabled for draw line, the result is a shaded or depth
cued line. Gouraud shading does not make any sense for a point and bit 12 must be programmed
to ‘0’ in a draw point instruction. Gouraud shading can also be used with mapped color. If the color
palette contains several color ranges, the shading can be arranged to fit within the ranges. In this
case, the mapped color value is calculated using the Red parameters.

Note that the Delta_Main and Delta_Ortho are not necessarily orthogonal to each other.
Delta_Ortho always is along the X-axis, but Delta_Main is along the main slope, which may very
well not be vertical.

MAIN SLOPE——»

DR_MAIN_3D
<4 (FOLLOWS MAIN SLOPE)

VTI_ORTHO}D

Figure 3-12. Gouraud Shading

Table 3-4 summarizes the values that are used for Gouraud shading. The Delta-Ortho values are
not used for lines.

Table 3-4. Values used for Gouraud Shading

Color Red Green Blue
Base color R_3D: 0x4008 G_3D: 0x400C B_3D: 0x4010
Delta main DR_MAIN_3D: 0x402C DG_MAIN_3D: 0x4030 DB_MAIN_3D: 0x4023

Delta_Ortho DR_ORTHO_3D: 0x4038 | DG_ORTHO_3D:0x403C | DB_ORTHO_3D: 0x4040

Copyright 1996 — Cirrus Logic Inc. 3-17 September 1996

3D PROGRAMMER'’S GUIDE

3.3.6

3.3.7

September 1996

CL-GD546X Software Technical Reference Manual

X-Y Clipping

X-Y clipping is used to confine the polygon to an arbitrary rectangular region. X-Y clipping does
not use any interpolators, the edges of the rectangle are fixed. Each of the four edges can be sep-
arately enabled with a ‘1’ in the respective enable bit. Table 3-5 summarizes the clipping controls
and values. If an edge is not enabled, the corresponding clipping value is ignored. The clipping
values have to make sense. Programming the Max value of either dimension to less than the cor-
responding Min value when both are enabled is an error.

Table 3-5. X-Y Clipping Controls
Edge Register Enable Clipping

Value

XMax X_CLIP_3D: 0x4160 Bit 31 26:16

XMin X_CLIP_3D: 0x4160 Bit 15 10:0

YMax Y_CLIP_3D: 0x4164 Bit 31 26:16

YMin Y_CLIP_3D: 0x4164 Bit 15 10:0

Z-Buffering

Z-Buffering is used to remove surfaces (or parts of surfaces) that lie behind objects that are
already in the scene. The depth (usually defined as the distance from the viewer) of each pixel of
an object is calculated as the object is rendered. The depth of current pixel is compared to the
depth of the corresponding pixel (in the frame buffer) of the object previously rendered. This
requires a buffer large enough to contain a depth value for every pixel, usually called the Z-Buffer.
Depending on the outcome of the comparison, the new pixel and depth can replace the previous
pixel and depth. Typically the comparison is: ‘Is this pixel in the current object closer to the viewer
than the same pixel already in the scene?’. Thus, objects (or parts of objects) closest to the viewer
are displayed on the screen.

The calculation of the Z-value for a pixel is exactly analogous to the calculation of any of the three
color values. The initial value is specified for the base point. This is incremented by DZ_MAIN for
each iteration inY as the main slope is traversed. Each value along the main slope is incremented
in turn by the value DZ_ORTHO for each pixel in the scanline. Since the increments are both
signed, the depth of the object can change smoothly in two dimensions as the object is rendered.
If the entire object is at a constant depth, the delta values would be set to zero. Table 3-6 summa-
rizes the values that are used for Z-depth. The Delta_Ortho value is not used for lines.

Table 3-6. Values Used for Z-depth
Value Register
Base depth Z_3D: 0x4044
Delta main DZ_MAIN_3D: 0x4048
Delta_Ortho DZ_ORTHO_3D: 0x404C

3-18 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

The Z-depth function is enabled by programming bit 13 of the drawing instruction to ‘1’. Z-depth
can be used for all the draw instructions. There are a number of fields that control the Z-depth func-
tion, summarized in Table 3-7 and Table 3-8.

Z-mode in CONTROLO_3DJ[30:28] controls whether a comparison is necessary and which buffers
are updated when the compare is true.

Table 3-7. Z Mode: CONTROLO_3D[30:28]

Z- Z-Mode Z-Buffer Pixel

Mode Name Update Update Description

000 Z-normal | Z-compare | Z-compare Update both Z-buffer and frame buffer if compare true

001 Z-mask Never Z-compare Update only frame buffer if compare true

010 Z-always | Always Always Update both Z-buffer and frame buffer without comparison
011 Z-only Z-compare | Never Update Z-buffer if compare true

100 Z-hit Never Never Set Z-collision flag and records Z-hit and Z-value

101 Reserved - - -

110 Reserved - - -

111 Reserved - - -

Z COMPARE_MODE in CONTROLO_3D[23:20] specifies the compare function (that is, the rela-
tionship between the old value and new value that results in the comparison being true).

Table 3-8. Z-Compare Mode: CONTROLO_3D[23:20]

Z-Compare Mode Compare is TRUE if: Note
0000 New value >= old value Greater than or equal to
0001 New value > old value Strictly greater than
0010 New value <= old value Less than or equal to
0011 New value < old value Strictly less than
0100 New value != old value Not equal
0101 New value == old value Equal

0110-1111 Reserved -

Z COLLISION_DETECT_EN in CONTROLO_3D[24] specifies whether a Z-collision sets the
Z_ COLLISION Event Status bitin STATUSO0_3DJ0]. In this context, a collision is any true compare.
A ‘1’ enables the collision detection.

Z-collision provides a method of determining whether an object is totally occluded and can be
bypassed. The depth of each pixel in the object is computed and compared to the depth of the
corresponding pixel in the frame buffer without changing either the frame buffer or Z-buffer. Since
only the position and depth of each pixel is computed, this can be substantially faster than actually
rendering the object (calculating color, lighting, and so on). Once the application knows if the

Copyright 1996 — Cirrus Logic Inc. 3-19 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

object is at least partially visible, it can then go back and actually render it (or at least the part that
is visible).

Another use for Z-collision is to detect that two objects are within the same ‘Z’ space.

Z STRIDE_CONTROL in CONTROLO_3D[16] specifies whether the Z-buffer is 8 or 16 bits per
pixel. A ‘1’ selects eight bits. This allows the Z-buffer to be stored with the actual pixels in 24-bpp
modes. Each pixel actually occupies 32 bits, one byte each of Red color, Green color, Blue color,
and Depth. If the fourth byte is used for the Z-buffer, it cannot simultaneously be used for Alpha.

For game programming, sometimes objects are rendered only once. Examples of such objects
are the dashboard of the car in a racer simulation or the cockpit of an aircraft in a flight simulator.
The 8-bit Z-stride allows for 256 levels of overlay. Thus, if the game already controls the depth, the
overlay field can increase rendering speed.

Z BUFFER_LOCATION in BASAEO_ADDR_3D[14] specifies whether the Z-buffer in is host pro-
cessor memory (‘1’) or in the RDRAM (‘0.

3.3.8 Color Transparency

Color transparency, another form of overlay, is also supported during triangle rendering. A color
compare range for each of the three colors allows the background to project through. The control
bits for color compare are summarized in Table 3-9.

Table 3-9. Color Compare Controls (CONTROLO_3D: 0x4104)

Control CONTROLO_3D Function
. 1: Mask inclusive to bounds
Color_Compare_Mode Bit 10 0: Mask exclusive to bounds
Blue_Color_Compare_En Bit 9 1: Enable blue compare
Green_Color_Compare_En Bit 8 1: Enable green compare
Red_Color_Compare_En Bit 7 1: Enable red compare

Table 3-10 summarizes the source of the comparison values.

Table 3-10. Color Compare Bounds

Color Minimum Maximum
COLOR_MIN BOUNDS_3D: 0x4108 COLOR_MAX_BOUNDS_3D: 0x410C
Red [23:16] [23:16]
Green | [15:8] [15:8]
Blue | [7:0] [7:0]

Depending on the color depth, the bits defining each color have to be replicated to fill the 8-bit
comparison value. The following three tables show, for each pixel mode, how the color bits must

September 1996 3-20 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER'’S GUIDE

be expanded to 8 bits. Each color value is replicated from left to right as many times as is neces-

sary to fill the 8-bit compare value.

Table 3-11. Color Bit Expansion: Red
Red Value 23 22 21 20 19 18 17 16
24-bpp, a:8:8:8 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16
16-bpp, 5:6:5 15 | 14 | 13 | 12 | 11 | 15 | 14 | 13
15-bpp, a:5:5:5 14 | 13 | 12 | 11 | 10 | 14 | 13 | 12
8-bpp, 3:3:2 7 6 5 7 6 5 7 6
Table 3-12. Color Bit Expansion: Green
Green Value 15 | 14 | 13 | 12 | 11 | 10 9 8
24-bpp, a:8:8:8 15 | 14 | 13 | 12 | 11 | 10 9 8
16-bpp, 5:6:5 10 9 8 7 6 5 10 9
15-bpp, a:5:5:5 9 8 7 6 5 9 8 7
8-bpp, 3:3:2 4 3 2 4 3 2 4 3
Table 3-13. Color Bit Expansion: Blue
Blue Value 7 6 5 4 3 2 1 0
24-bpp, a:8:8:8 7 6 5 4 3 2 1 0
16-bpp, 5:6:5 4 3 2 1 0 4 3 2
15-bpp, a:5:5:5 4 3 2 1 0 4 3 2
8-bpp, 3:3:2 1 0 1 0 1 0 1 0
Copyright 1996 — Cirrus Logic Inc. 3-21

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.3.9 Lighting

The lighting stage allows each of the three colors to be multiplied by a common value. This func-
tion is enabled by programming the instruction modifier bit 18 to ‘1’. The source for the lighting mul-
tiplier is selected with Light_Src_Sel in CONTROLO_3D[26:25], as summarized in Table 3-14.

Table 3-14. Lighting Multiplier Source

Light_Src_Sel Source Used For
00 Polygon engine RGB source from interpolators in 3D engine
01 LM interpolator Interpolated lighting
10 COLOR_REG1_3D | Fixed color lighting
11 Reserved (unused)

3.3.10 Saturation

When the CL-GD5464 is configured for 8-bpp Color LUT mode, color saturation can be enabled
by programming bit 6 of CONTROLO_3D to ‘1’. When this bit is set, the color value (index into the
LUT) from this stage is forced to be within the values programmed in the registers summarized in
Table 3-15.

Table 3-15. Color Saturation Values

Value Register Bits
Minimum bound COLOR_MINBOUNDS_3D: 0x4108 31:24
Maximum bounds COLOR_MAX_BOUNDS_3D: 0x410C 31:24

This is used when the color palette has a series of color ramps for shaded objects. It clamps the
index to prevent it from drifting into the color space of other objects. This mode does not require
extra overlay fields as in the 24-bpp modes, but does require some color resolution trade-off for
overlay capability.

3.3.11 Alpha Blending

Alpha blending provides a means of combining the data already in the frame buffer with the object
being rendered. Alpha is the blending coefficient. It determines the ratio of source to destination
of the value actually written. Alpha blending is enabled by programming CONTROLO_3D[15] to
‘1’. The Alpha-mode field in CONTROLO_3D controls the inputs into the alpha blending stage as
summarized in Table 3-16.

Table 3-16. Alpha_Mode Field (CONTROLO 3D [12:11])

Alpha Source Destination Note
Mode Alpha Alpha
00 DA _MAIN_3D DA ORTHO_3D Fixed alpha blending
01 n/a n/a Reserved

September 1996 3-22 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Table 3-16. Alpha_Mode Field (CONTROLO_3D [12:11]) (cont.)

Alpha Source Destination Note
Mode Alpha Alpha
10 LA interpolator 255 minus LA interpolator Interpolated alpha
blending
. Frame buffer alpha
11 Alpha byte from frame buffer 255 minus Alpha byte blending

Interpolated alpha blending can be used when the transparency of the object being rendered is
not a constant. The LA interpolator is exactly analogous to the Gouraud shading interpolators and
can be used for either Lighting or Alpha (but not both at the same time). There is an unsigned base
value and two signed deltas. These values are summarized in Table 3-17. When interpolated
alpha is being used, these are real numbers. As usual, the radix point is between bit position 15
and bit position 16. The two deltas are signed numbers, allowing the interpolated alpha value to
vary smoothly in two dimensions as the object is rendered.

When the alpha value is interpolated, the source alpha is the interpolated value and the destina-
tion alpha is 256 minus the interpolated value.

Table 3-17. LA Interpolator Values

Value Register

Base Alpha A_3D: 0x40CO

Delta Main DA_MAIN_3D: 0x40C4

Delta Ortho DA_ORTHO_3D: 0x40C8

Fixed alpha blending can be used when the transparency of the object being rendered is con-
stant. The contributions of the source and destination pixels are specified separately. The values
are summarized in Table 3-18. The constants are interpreted as the numerator of a fractional mul-
tiplier whose denominator is fixed at 256. There is a radix point between bit position 15 and bit
position 16. A constant of 0x00 means that the corresponding source or destination contributes
nothing to the output color. A constant of 0x100 (decimal 256) means the corresponding source
or destination contributes unity to the output value. Constants in between result in corresponding
amounts contributed to the output value. The constants do not have to add up to unity.

Table 3-18. Fixed Alpha Constants

Multiplier Register
Source Pixel DA_MAIN_3D: 0x40C4
Destination Pixel DA_ORTHO_3D: 0x40C8

Copyright 1996 — Cirrus Logic Inc. 3-23 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

Alpha_Dest_Color_Select in CONTROLO_3D[14:13] specifies the source of the destination
pixel that is mixed with the object being rendered. This is summarized in Table 3-19.

Table 3-19. Alpha_Dest_Color_Select

Alpha_Dest_Color_Select Alpha Dest Source Note
00 Existing frame buffer data Fetch_Color (Instruction [23]) set
01 COLOR_REG1_3D -
10 Polygon engine interpolators | With shading, patterning
11 Reserved -

3.3.12 Additional Notes on Lighting

The CL-GD5464 color path supports lighting, blending, and fog within a single-render operation.
The data rate, after the pipeline is filled, is 12 ns/texel or 80 MHz. This allows one pixel out for
every clock cycle. Now the real throughput is determined by how well the source data (that is,
alpha source, texture source, and Z-buffer source) are supplied to the input side of the equation.

A simple guideline can be used to estimate the rasterization rate for 16-bpp data source. Simply
divide the number of sources by the master clock rate. Some examples are given in Table 3-20.

Table 3-20. Estimating Rasterization Rate

Example Sources | Rate at 80 MHz Note
2D texture mapped polygon 2 40 MHz Master clock rate / 2
3D texture polygon 4 20 MHz Master clock rate / 4
3D texture with alpha blending 6 13.3 MHz Master clock rate / 6

This is only a guideline and many variables apply. For example, the internal texture cache elimi-
nates some of the texture source fetches. In fact, if the texture fits entirely in the cache, then the
texture adder is eliminated altogether. In all cases, the data-path pipeline always runs through the
master equation at the full 80-MHz clock rate (that is, if all source data is present, then perspective,
3D lighted, textures will output at the full 80-MHz clock).

September 1996 3-24 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.3.13 Data Path Equation
The CL-GD5464 master data path equation is shown below:

[{Cs(T)+Ct(1—T)} » Al Lm+ Cc(255-A) Equation 3-1
where:
Csisthe RGB components of the source color. These are the Gouraud values from the CL-GD5464 RGB color inter-
polators.

T isthe Transparency Enable bit, valid only inthe 1:8:8:8 and 1:5:5:5 Texture modes. Thisbit can be considered the
Alpha Texture Enable bit.

Ct isthe RGB components of the texture map when in any of the 4- or 8-bit Texture Index mode or the Direct Color
modes 3:3:2, 5:6:5, 1:5:5:5, 8:8:8, or 1:8:8:8. Ct isindexed texture when in the 8-bit Color L ookup mode. It shares
the same color palette index (the color value) with the normal color lookup.

A isthe Alphablending term and has three sources, as shown in Table 3-16.

L m isthe modulator for lighting, and has three sources, as shown in Table 3-14.

Ccistypically the RGB destination read values, but can also take on two other forms. For DECAL texture Cc can
be the RGB Gouraud interpolation values. For fog or depth cueing, Cc can be a fixed value from
COLOR_REG1 3D.

This equation allows for full lighting and blending operation in a single pass, supporting fog, tex-
ture, and alpha blend.

An additional interpolation unit is used to satisfy fog rendering. For fog, an independent color ramp
blended with the source fragment is required. The Cc(255-A) term in the equation becomes the
Fog adder, where ‘A’ is from the separate alpha interpolator. This allows FOG on Decal textured
objects when in the 1:8:8:8 and 1:5:5:5 display modes. The Lm term allows for lighting during the
same render operation. It is important to remember that this can be scaled down by entering
zeroes for the T and Lm fields. Here the term {CS(T)+Ct(1-T)} can be consolidated as Cf, or the
result fragment. Thus the FOG equation can be re-written without lighting:

Cf e A+ Cc(255-A) Equation 3-2
and with lighting:
(Cfe A)e Lm+ Cc(255—-A) Equation 3-3

Note that during Decal Texture mode, lighting the fog requires an extra rendering step. Alternately,
for Non-Decal Texture mode, the Cc term can be sourced as an independent light source for the
fog component.

Depending on the speed, quality, and function requirements, the CL-GD5464 can ‘Decal’ texture
in multiple ways. The simplest and most common method is to use the 1:8:8:8 or 1:5:5:5 texture
modes. This gives a single-pass rendering of transparent Gouraud shading seen through textured
objects. In this case the MSB of the texture map selects between shaded and textured operation.
This selection is done ‘on the fly’ as the texture map information is read in the device. During the
same operation, the result can also be lit with white by the addition of the ‘Lm’ term. In addition,
blending of previously rendered backgrounds seen through the Decal can be added during this
single-pass operation.

Copyright 1996 — Cirrus Logic Inc. 3-25 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

The following equations show three cases for the 1:8:8:8 and 1:5:5:5 modes. The MSB in the tex-
ture map is used to select between texture and shaded sources (‘T’ in the equations).

Trivial, no lights, no blending. ‘T’ is either ‘0’ or ‘1"
{Cs(T)+Ct(1-T)} Equation 3-4
Decal Texture with lighting, no blending. Lm is from alpha interpolator. A=0xff.

{Cs(T)+Ct(1-T)} «Lm Equation 3-5

Decal texture with lighting and blending. Cdest is read from the frame buffer, A is either fixed alpha
or frame alpha (the blend factor):

[{Cs(T)e Ct(1L-T)} » Al * Lm+ Cdest(255—-A) Equation 3-6

3.3.14 Texture and Perspective Texture Mapping

Texture mapping is the process of reading a 2D map or image and stretching (‘mapping’) that
image onto a 3D surface. Conventional techniques use many small triangles to give more detalil
to the final image. With the process of texture mapping, large triangles can be used and the appli-
cation of a detail map can be used to give a satisfactory appearance.

The CL-GD5464 uses first- and second-order differentiation to approximate the divide operation
required by perspective mapping. Thus, as triangles that have texture applied are drawn into the
distance, a perspective operation is applied to approximate the curve. Linear (or affine) texture
does not require a perspective divide. Because of this, objects that traverse into the distance do
not look correct. Algorithms that subdivide large polygons can be applied to correct the accumu-
lated perspective error.

The texture engine uses inverse mapping technigues and runs in parallel with the polygon engine.
The CL-GD5464 architecture allows for full random triangle mapping with perspective correction.
The driver receives U, V, W, and texture map base-address information and converts them into
values suitable for the registers. The texture map information can be in RDRAM, host system
memory, or both and is read into an internal texture cache.

Texture mapping is illustrated in Figure 3-13. The location of the pixels are being calculated using
the values and interpolators described in Section 3.3.2. In parallel, the U and V pointers into the
texture map are being calculated with separate interpolators. Then the data from the texture map,
addressed by U and V, is written into the object being rendered, addressed by X and Y. The normal

September 1996 3-26 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

shading calculations can be executed in parallel with this to provide a color to be used instead of
the color from the texture map.

U
BASE >
V \
MAP (U,V)
Y
TEXTURE MAP OBJECT BEING RENDERED

Figure 3-13. Texture Mapping Overview

In some cases, calculating pointers into the texture map using linear interpolation does not yield
sufficiently convincing results. Consider the example illustrated in Section 3-14.

Figure 3-14. Perspective Texture Mapping Example

The actual distance (along the road) between the signs is a constant, as is the size of the signs.
But the signs appear closer together as they go further into the distance (as well as appearing

Copyright 1996 — Cirrus Logic Inc. 3-27 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

smaller). This is a curve and requires a divide to calculate exactly. The CL-GD5464 uses second-
order terms to approximate the curve.

The texture formats are summarized in Table 3-21. The format is specified in TX_CTLO_3D [10:8].

Table 3-21. Texture Formats
Texel Size | Format Note
4-bpp TLUT 16 maps, each map of 16 colors from a palette of 16 million
8-bpp TLUT 1 map, of 256 colors from a palette of 16 million
8-bpp 3:2:2 Hardware dither
16-bpp 5:6:5 Hardware dither
16-bpp 1:5:5:5 | Bit 15 can be used as mask or as source select in Decal mode
32-bpp a:8:8:8 | Bit 31 can be used as mask or as source select in Decal mode
32-bpp Z:8:8:8 | 8-bpp Z-buffer

In the 8-bpp LUT mode, the TLUT can be subdivided into multiple maps with the texture index off-
set address into the TLUT.

The source of the constants used to calculate 'V’ and ‘U’ (the values used to select an entry in the
texture map) are summarized in Table 3-22. The first six (V, DV_MAIN, DV_ORTHO, U, DU_MAIN,
and DU_ORTHO) are evaluated using ‘standard’ interpolation, exactly the same as Gouraud
shading. The second-order values are used for perspective texture mapping.

Table 3-22. Texture Mapping: V and U Constants
Constant \% U Note
Base point V_3D: 0x4050 U_3D: 0x4054
Delta main DV_MAIN_3D: 0x4058 DU_MAIN_3D: 0x405C ;ftt‘e"‘:‘pdo"’l‘;?i’on
Delta_Ortho DV_ORTHO_3D: 0x4060 DU_ORTHO_3D: 0x4064

Second-order main

D2V_MAIN_3D: 0x4068

D2U_MAIN_3D: 0x406C

Second-order ortho

D2V_ORTHO_3D: 0x4070

D2U_ORTHO_3D: 0x4074

Ortho add

DV_ORTHO_ADD_3D: 0x4078

DU_ORTHO_ADD_3D: 0x407C

Perspective
only

September 1996

3-28

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.3.15 Quadrangles

The CL-GD5464 can draw quadrangles that have a flat top or bottom (or both). Table 3-23 sum-
marizes two registers that can be used to set the initial width (at the top of) Area 1 and Area 2.
These are both unsigned numbers in the range 0 to 2047.X. As usual, there is a radix point
between bit position 15 and bit position 16.

Table 3-23. Initial Width Value

Area Register

1 WIDTH1_3D: 0x401C

2 WIDTH2_3d: 0x4020

A quadrangle that is flat on the top is shown in Figure 3-15. As always, one side has to span the
entire height of the polygon. The base point is at the top of the main slope. Since the initial width
is non-zero, the top of the polygon is not a point, but is rather a flat line. The initial widths are
enabled by programming bit 24 of the draw instruction to ‘1’. Widthl and Width2 are enabled
together. If one is required, the other must be specified even though it may not be otherwise
required.

BASE POINT

A

«— WIDTH1T ——»
-€— MAIN SLOPE

OPPOSITE POINT —>» 4 WIDTH2 ———M

Figure 3-15. Quadrangle with Flat Top

A guadrangle that is flat on the bottom is shown in Figure 3-16. This can be drawn by the simple
expedient of setting the delta width2 (DWIDTH2) so that the object does not come to a point at the
bottom. It is possible to draw quadrangles that are flat both on the top and bottom.

<¢——— BASEPOINT

«— MAIN SLOPE

Figure 3-16. Quadrangle with Flat Bottom

Copyright 1996 — Cirrus Logic Inc. 3-29 September 1996

3D PROGRAMMER'S GUIDE

3.3.16 Lines and Points

Lines and points can be considered small polygons. Different instructions are used to draw them
and different (fewer) registers are used. Table 3-24 summarizes the registers required for each
object. ‘Skip if means the object requires the register unless one or more of the skip cases is pro-
grammed.

The CL-GD5464 can draw lines with Gouraud shading, Z-buffering, and alpha blending. Basically,
a line is just the main slope of a polygon. The Delta-Orthos are not used, but everything that

CL-GD546X Software Technical Reference Manual

applies to the main slope of a polygon applies to a line, including texturing.

When lines are drawn with a slope of less than 45 degrees, they are X-major rather than Y-major.

See Section 3.5.3.5.

Table 3-24. Register Summary

Ag?frseests Register Polygon Line Point Skip Case(s)

0x4000 X_3D Always Always Always | —

0x4004 Y_3D Always Always Always | —

0x4008 R_3D Skip if Skip if Skipif | -

0x400C G_3D Skip if Skip if Skip if Mapped color

0x4010 B_3D Skip if Skip if Skip if Mapped color

0x4014 DX_MAIN_3D Always Always Never -

0x4018 Y_COUNT_3D Always Always Never -

0x401C WIDTH1_3D Skip if Always Never Initial width off

0x4020 WIDTH2_3D Skip if Never Never Initial width off

0x4024 DWIDTH1_3D Always Never Never -

0x4028 DWIDTH2_3D Always Never Never -

0x402C DR_MAIN_3D Skip if Skip if Never Gouraud off

0x4030 | DG_MAIN_3D Skipit | Skipif | Never | mappedcolor,

0x4034 | DB_MAIN_3D Skipit | Skipif | Never | Mappedcolor

0x4038 DR_ORTHO_3D Skip if Never Never Gouraud off

0x340C DG_ORTHO_3D Skip if Never Never Gouraud off

0x4040 DB_ORTHO_3D Skip if Never Never Gouraud off

0x4044 Z 3D Skip if Skip if Skipif | Z off

0x4048 DZ_MAIN_3D Skip if Skip if Never Z off

0x404C DZ ORTHO_3D Skip if Never Never Z off
September 1996 3-30

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Table 3-24. Register Summary (cont.)

Ag?frsees;s Register Polygon Line Point Skip Case(s)
0x4050 V_3D Skip if Skip if Skip if Texture off
0x4054 uU_3D Skip if Skip if Skip if Texture off
0x4058 DV_MAIN_3D Skip if Skip if Never Texture off
0x405C DU_MAIN_3D Skip if Skip if Never Texture off
0x4060 DV_ORTHO_3D Skip if Never Never Texture off
0x4064 DU_ORTHO_3D Skip if Never Never Texture off
0x4068 D2V_MAIN_3D Skipif | Skipif | Never | lexture off
perspective off
0x406C | D2U_MAIN_3D Skipif | Skipif | Never | lexture off,
perspective off
0x4070 D2V_ORTHO_3D Skip if Never Never ;‘;’g‘gfcggé off
0x4074 D2U_ORTHO_3D Skip if Never Never ;Zﬁ‘i)fcﬁfvfé off
0x4078 DV_ORTHO_ADD_3D Skip if Never Never giﬁléfcﬁgé off
0x407C DU_ORTHO_ADD 3D Skip if Never Never ;i):;l;)fcg\f;é off
0x40CO0 A_3D Skip if Skip if Never Alpha load off
0x40C4 DA_MAIN_3D Skip if Skip if Never Alpha load off
0x40C8 DA_ORTHO_3D Skip if Never Never Alpha load off

Copyright 1996 — Cirrus Logic Inc. 3-31 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.4 3D Memory Organization

The CL-GD5464 has several models for 3D memory. The basic views of memory are listed below.

1) The view of frame buffer memory from the system processor (across PCI bus).
2) The view of the register set from the system processor (across PCI bus).
3) The view of the following system memory objects from the CL-GD5464 viewpoint:
a) Display list memory.
b) Z-buffer and color map buffers when in system memory.
c) Texture memory when in system memory.
4) ghe READ_DEV_REGS_3D — multiple command'’s view of the system memory location where to write
ata.

3.4.1 System Memory Space View of Frame Buffer Memory

The CL-GD5464 register set is visible in system memory at the location selected by the PCI con-
figuration register for the Memory-Mapped registers (PCI10). Registers can be written directly by
adding their offsets to the initial CL-GD5462 Memory-Mapped register address. Alternatively, one
or more registers can be written in a stream by the WRITE_3D REGISTER (new CL-GD5464 reg-
isters), or the WRITE_DEVICE_REGS (CL-GD5462 registers) commands. This last operation
can either be done by a display list or by directly programming its data to the HOST_3D_DATA
offset from the base PCI Address register for the Memory-Mapped registers.

3.4.2 System Processor (Across PCI Bus) View of the Register Set
The CL-GD5464 Memory-Mapped 3D registers are listed in Table 3-25.

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers

Byte Lane
Offset 3 2 1 0
4000h X_3D
4004h Y_3D
4008h R_3D
400Ch G_3D
4010h B_3D
4014h DX_MAIN_3D
4018h Y_COUNT_3D
401Ch WIDTH1_3D
4020h WIDTH2_3D
4024h DWIDTH1_3D
4028h DWIDTH2_3D

September 1996 3-32 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER'’S GUIDE

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers (cont.)
Byte Lane
Offset 3 2 0
402Ch DR_MAIN_3D
4030h DG_MAIN_3D
4034h DB_MAIN_3D
4038h DR_ORTHO_3D
403Ch DG_ORTHO_3D
4040h DB_ORTHO_3D
4044h Z_3D
4048h DZ_MAIN_3D
404Ch DZ_ORTHO_3D
4050h V_3D
4054h U_3D
4058h DV_MAIN_3D
405Ch DU_MAIN_3D
4060h DV_ORTHO_3D
4064h DU_ORTHO_3D
4068h D2V_MAIN_3D
406Ch D2U_MAIN_3D
4070h D2V_ORTHO_3D
4074h D2U_ORTHO_3D
4078h DV_ORTHO_ADD_3D
407Ch DU_ORTHO_ADD_3D
4080h:40BCh
40COh A 3D
40C4h DA_MAIN_3D
40C8h DA_ORTHO_3D
40CCh:40F8h
40FCh OPCODE_3D
4100h CONTROL_MASK_3D
4104h CONTROLO_3D
Copyright 1996 — Cirrus Logic Inc. 3-33 September 1996

3D PROGRAMMER'S GUIDE

CL-GD546X Software Technical Reference Manual

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers (cont.)
Byte Lane
Offset 3 2 1 0
4108h COLOR_MIN_BOUNDS_3D
410Ch COLOR_MAX_BOUNDS_3D
4110h CONTROL1_3D
4114h BASEO_ADDR_3D
4118h BASE1_ADDR_3D
411Ch Reserved
4120h TX_CTLO_3D
4124h TX_XYBASE_3D
4128h TX_CTL1_3D
412Ch TX_CTL2_3D
4130h COLOR_REGO0_3D
4134h COLOR_REG1_3D
4138h Z_COLLIDE_3D
413Ch STATUSO_3D
4140h PATTERN_RAM_0_3D
4144h PATTERN_RAM_1_3D
4148h PATTERN_RAM_2_3D
414Ch PATTERN_RAM_3_3D
4150h PATTERN_RAM_4_3D
4154h PATTERN_RAM_5_3D
4158h PATTERN_RAM_6_3D
415Ch PATTERN_RAM_7_3D
4160h X_CLIP_3D
4164h Y_CLIP_3D
4168h TEX_SRAM_CTRL_3D
416Ch:41FCh
4200h HXY_BASEO_ADDRESS_PTR_3D
4204h HXY_BASEO_START_3D
4208h HXY_BASEO_EXTENT_3D

September 1996

3-34

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers (cont.)

Byte Lane
Offset 3 2 1 0
420Ch Reserved
4210h HXY_BASE1_ADDRESS_PTR_3D
4214h HXY_BASE1_OFFSETO_3D
4218h HXY_BASE1_OFFSET1_3D
421Ch HXY_BASE1_LENGTH_3D
4220h:43Ch
4240h HXY_HOST_CTRL_3D
4244h:425Ch
4260h MAILBOXO0_3D
4264h MAILBOX1_3D
4268h MAILBOX2_3D
426Ch MAILBOX3_3D
4270h:43FCh
4400h PF_BASE_ADDR_3D
4404h PF_CTL_3D
4408h PF_DEST_ADDR_3D
440Ch PF_FB_SEG_3D
4410h:441Ch
4420h PF_INST_ADDR_3D
4424h PF_STATUS_3D
4428h:443Ch
4440h HOST_MASTER_CTL_3D
4444h:447Ch
4480h PF_INST 3D
4484h:47FCh
4800h:4BFCh HOST_3D_DATA_PORT
4C00h:4FFCh HOST_TEXTURE_DATA_PORT

Copyright 1996 — Cirrus Logic Inc. 3-35 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.4.2.1 Memory-Mapped I/O

Most registers in the CL-GD5464 are accessed using memory-mapped 1/O. There is a 32-Kbyte
extent, comprising four 4-Kbyte apertures. The programmer should program the base address into
PCI10: MMI/O Base Address register.

The registers that are accessible using memory-mapped I/O are described in the Laguna
VisualMediaO Accelerators Family — CL-GD546X Volume | (Hardware Reference Manual, Sec-
ond Edition, September 1996). The MMI/O offset for each register is given in the register descrip-
tion, and in the summary table at the beginning of each respective chapter.

The 2D Graphics Accelerator register set resides at the beginning of the 32-Kbyte extent of mem-
ory. This aperture is 16-Kbyte in length to provide for four different bi-endian data swapping
modes. The 3D register set begins at the next 16-Kbyte above the 2D register set (for a total of 32
Kbytes) and is organized as shown in Table 3-26.

Table 3-26. CL-GD5464 Register Apertures

MMI/O Offset Contents Format

3D Register Set

7000h CL-GD5464 4-Kbyte register aperture Bytes swapped within dword

6000h CL-GD5464 4-Kbyte register aperture Bytes swapped within dword (same as above)
5000h CL-GD5464 4-Kbyte register aperture Bytes swapped within words

4000h CL-GD5464 4-Kbyte register aperture No swapping (default)

2D Register Set

3000h CL-GD5462 4-Kbyte aperture Bytes swapped within dword

2000h CL-GD5462 4-Kbyte aperture Bytes swapped within dword (same as above)
1000h CL-GD5462 4-Kbyte aperture Bytes swapped within words

0000h CL-GD5462 4-Kbyte aperture No swapping

NOTE: Inthis manual, the address of the register in the first aperture is used generically to represent reg-
ister locations.

3.4.2.2 1/0-Mapped Registers
There are registers accessible using normal /0.

These are the VGA Core registers and Extended I/O registers, described in the Laguna
VisualMedialOl Accelerators Family — CL-GD546X Volume | (Hardware Reference Manual, Sec-
ond Edition, September 1996). The I/O-Mapped registers have fixed addresses that are nearly all
standard VGA.

A few registers are accessible both in the memory and 1/O space. Most of these are in the CRT
Controller and each have addresses in the appropriate columns of the summary tables in each
chapter.

September 1996 3-36 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.4.3 System Memory Objects View from the CL-GD5464

3.4.3.1 3D General System Memory Objects

There are three memory objects that can be in system memory (logically four, since Z and color
buffer are combined). These are Z-buffer, color buffer, texture buffer, and display list buffer. The
display list can only be in system memory.

Each of these objects must be in locked memory for the CL-GD5464 PCI bus master to reliably
locate them. They can either be located with a fixed, contiguous physical memory region of up to
4 Mbytes or in a non-contiguous virtual memory space of up to 4 Mbytes. The CL-GD5464 pro-
vides the translation from virtual-to-physical addresses through a software-created translation
table in locked physical memory. These two cases are distinguished by a control within
CL-GD5464 as well as the indication as to whether the objects are in system memory or in frame
buffer memory.

3.4.3.2 Virtual Memory Translation

The 3D engine’s XY to linear conversion generates a 22-bit byte address (‘A’) corresponding to
the XY address. Some memory objects such as ‘Z’, texture, and color buffers have offsets that are
added to X and Y prior to this conversion. This address is illustrated below.

Table 3-27. Linear Address

31 22|21 1211 0
Field Name A0 Al A2

Bits 31-22 of virtual address Bits 21:12 of virtual . . .

(these hits are ignored) address Bits 11:0 of virtual address

The virtual memory address (‘A’) is treated in one of two ways. For virtual memory translation
(bit 0 of the BASE_ADDRESS_XX register for that object is ‘1’), bits 31:12 of the
BASE_ADDRESS_XX register (‘B’) point to a physical memory location for a 4-Kbyte virtual trans-
lation table for that system memory object.The Base Address (‘B’) for the system memory object
is illustrated below.

Table 3-28. Base Address

31 1211 1 0

Field Name BO B1 B2

Bits 31:12 of system memory base address
(points to the virtual address translation table
for this object — on 4-Kbyte boundary).

Reserved in virtual | 0 = Physical
mode. Write 0s 1 =Virtual

Bits 21:12 [A1] of the virtual memory address [A] index one of 1024 dword entries in the virtual
memory translation table. The 4-Kbyte translation table in physically locked down system memory

Copyright 1996 — Cirrus Logic Inc. 3-37 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

contains 1-Kbyte, 32-bit translation entries. (This yields a 4-Mbyte maximum size for each system
memory object). Translation table entries (‘C’) have the following format illustrated below.

Table 3-29. Translation Table Entry

31 1211 1 0

Field Name Co C1 C2

1 = page present

Bits 31:12 of physical address 0..0 1 = page not present

Each 32-bit translation table entry defines the upper 20 bits of the final physical address that
corresponds to the original virtual address. The translations for four entries in the table (a set for
each object) are cached in the CL-GD5464 to reduce translation table fetches for high-locality
accesses. The final physical address corresponding to the original XY address is illustrated
below.

Table 3-30. Final Physical Address

31 1211 2|1 0

Field Name DO D1 D2

Bits 31:12 of C (field CO) Bits 11:2 of A (field A2) 00

Bits 11:2, of the virtual address, are concatenated to the upper 20 bits just looked up in the table
to form the physical address used by the CL-GD5464 to fetch the indicated data.

3.4.3.3 Physical Memory Addressing

The engine’s XY to linear conversion generates a 22-bit byte address (‘A’) corresponding to the
XY address. (Some memory objects such as Z, texture, and color buffers have offsets that are
added to X and Y prior to this conversion. The virtual memory address (‘A’), resulting from XY lin-
ear conversion (23-bit byte address), is illustrated below.)

Table 3-31. Linear Address

31 22121 12 110

Field Name A0 Al A2

Bits 31:22 of virtual address (these

. - Bits 21:12 of virtual address Bits 11:0 of virtual address
bits are ignored)

September 1996 3-38 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

For physical memory translation (bit O of the BASE_ADDRESS_XX register for that object is 0),
field Al of the resulting virtual memory address [A] is added to field BO (bits 31-12) of the
BASE_ADDRESS_XX register [B]. This scheme assumes an up to 4 Mbyte physically contiguous
locked down region is being used in system memory for the object. The Base Address B for the
system memory object is illustrated below.

Table 3-32. Base Address

3112 11 2]1 0

Field Name BO B1 B2

Bits 31:12 of system memory base
address (points to the starting | Base address physical range |0 = Physical
physical address for this object — | (see BASE_ADDR_XX) 1 =Virtual

on 4-Kbyte boundary).

The result CO is concatenated to field A2 of the original virtual memory address to form the final
physical address. The final physical address, corresponding to the original XY address, is illus-
trated below. The final physical address is illustrated below.

Table 3-33. Final Physical Address

31 1211 201 0

Field Name Co C1 C2

Sum of fields A0 and field BO Copied from field A2 00

3.4.3.4 3D Display List Memory

The display list memory object behaves exactly as described above. It uses 4400h, the
INSTRUCTION_PTR_3D register, as its equivalent to the BASE_ ADDRESS_XX registers.

3.4.3.5 Z-Buffer and Color Map Buffers Mixed in System Memory
TBD

3.4.3.6 Texture Memory Format in System Memory

TBD

3.44 READ_3D_REGISTER — Multiple Commands View of System Memory
TBD

Copyright 1996 — Cirrus Logic Inc. 3-39 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5

3.5.1

CL-GD5464 3D Instruction Set

The CL-GD5434 3D engine is a stored-program computer with its own instruction set. This section
covers the instructions, including the formats and field definitions. In Section 3.5.3, each instruc-
tion is described in detail.

Many instructions have field definitions that are common. An example is the EVENT_MASK in bits
10:0 of TEST and WAIT instructions. These common fields are defined in Section 3.5.2 and then
referenced in the individual instruction definitions.

Instruction Summary

Each instruction on the CL-GD5464 is precisely 32-bits long and must reside in system memory
on a DWORD boundary. Instructions are often followed by a list of parameters. For example,
DRAW _POINT is followed by parameters that define the location of the point in display memory
space (X, Y, Z) and color space (R, G, B).

Instructions can be loaded into the CL-GD5464 by the host (see Section 3.2.1 and Section 3.2.2),
but are more often fetched by the CL-GD5464 itself using the bus master capabilities of the PCI
host interface (display list programming). In the cases where it makes a difference in the descrip-
tion, this section assumes display list programming.

3.5.1.1 Drawing Instructions

There are three drawing instructions. The format of the drawing instructions is shown in
Table 3-34.

Table 3-34. Drawing Instruction Format Summary

Field Bits Description
OP_CODE 31:27 | Specifies instruction
STALL 26 Stall control for all opcodes

INSTR_MODIFIER | 25:12 | Controls details of instruction execution (seeTable 3-41)

ADDR 11:6 Destination register for first parameter, usually ‘0’

COUNT 5:0 Number of parameter words following the instruction word (0 to 63)

The opcodes for the drawing instructions are summarized in Table 3-35.

Table 3-35. Drawing Instruction Opcodes

Hex Value

Instruction | Opcode (Binary) (32-bit Template)

DRAW_POINT 00000 0000 0000h
DRAW_LINE 00001 0800 0000h
DRAW_POLY 00010 1000 0000h

September 1996 3-40 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

The number and order of parameters used by the drawing instruction varies according to the
instruction and the modifier bits. Typically, DRAW_POINT uses fewer parameters than
DRAW_LINE, which uses fewer parameters than DRAW_POLY. The description of each DRAW
instruction includes a table specifying the order of the parameters, and the parameter(s) that are
skipped based on the modifier bits.

The ADDR field specifies the register that the first parameter is to be loaded into. Since the first
parameter is nearly always X_3D, this field is nearly always programmed to ‘0’. The COUNT field
specifies the number of parameters. This can be as few as three for a DRAW_POINT to over 30
for a DRAW_POLY.

3.5.1.2 Transfer Instructions

There are four instruction used to transfer control within a display list. The format of the transfer
instructions is shown in Table 3-36.

Table 3-36. Transfer Instruction Format Summary

Field Bits Description
OP_CODE 31:27 Specifies instruction
STALL 26 Stall control for all opcodes
(Reserved) 25:22 | Must be zero
OFFSET_ADDR 21:2 Destination address
(Reserved) 1.0 Must be zero

The opcodes for the transfer instructions are summarized in Table 3-37.

Table 3-37. Transfer Instruction Opcodes

Hex Value

Instruction | Opcode (binary) (32-bit Template) Note

BRANCH 00111 3800 0000h Unconditional
C_BRANCH 01000 4000 0000h Transfer if condition true
NC_BRANCH 01001 4800 0000h Transfer if condition false
CALL 01010 5000 0000h Unconditional, store return

These four instructions conditionally or unconditionally transfer control within a display list. If the
3D engine is not in Display List mode, execution of any of these instructions puts it into Display
List mode.

The two conditional branch instructions test a single-condition bit, which must have been previ-
ously set or reset with a TEST instruction. The actual condition tested is specified in the TEST
instruction.

The CALL instruction stores the offset of the next instruction so that it can be restored with a
RETURN instruction. The CL-GD5464 supports a single level of subroutine. If a CALL is executed
inside a subroutine, the original return address is lost.

Copyright 1996 — Cirrus Logic Inc. 3-41 September 1996

3D PROGRAMMER'S GUIDE

CL-GD546X Software Technical Reference Manual

The OFFSET field is added to the PF_BASE_ADDR_3D register to obtain the target address.
Instructions are always on DWORD boundaries; the least-significant two bits of the

OFFSET_ADDR and PF_BASE_ADDR_3D must always be ‘0'.

3.5.1.3 Control Instructions

There are nine control instructions with various formats. The formats are shown in Table 3-38
through Table 3-40.

Table 3-38. TEST/WAIT Instruction Format Summary
Field Bits Description

OP_CODE 31:27 Specifies instruction
STALL 26 Stall control for all opcodes
AND_OR 25 Controls how tests are combined
NOT 24 Inverts the sense of the test
(Reserved) 23:11 Must be zero
EVENT_MASK 10:0 Conditions are individually enabled

The purpose of the TEST instruction is to set or reset the condition flag for a subsequent condition
branch instruction. The purpose of the WAIT instruction is to wait for an event or combination of
events to be true or false before continuing the instruction stream. The WAIT instruction does not
change the condition flag.

The AND_OR bit and NOT bit control how conditions are combined. The details are included in
the instruction descriptions.

The EVENT_MASK consists of individual bits for a number of events or conditions. They are enu-
merated in Table 3-42. Since there is a bit for each event or condition, multiple events, or condi-
tions can be combined in a single TEST or WAIT instruction. The AND_OR and NOT bits control
how they are combined.

Table 3-39. CONTROL ‘I’ Instruction Format Summary
Field Bits Description Note
OP_CODE 31:27 | Specifies instruction
STALL 26 Stall control for all opcodes
SUB_OPCODE | 25:22 | Specifies one of 16 operations | Six are used
(Reserved) 21:0 | Must be zero

September 1996

3-42

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Six CONTROL ‘I' instructions are available. They are distinguished by a four-bit SUB_OPCODE,
summarized in Table 3-40.

Table 3-40. CONTROL ‘I' Instructions

Instruction | SUB_OPCODE | _ 52 Pt Function
- Instruction
IDLE 0000b 6800 0000h | Idle prefetch unit (return to Coprocessor mode).
IDLE_INT 0001b 6840 0000h Idle prefetch unit (return to Coprocessor mode) and set host

interrupt request.

No operation. Can be used with STALL bit to provide draw

NOP 0010 6880 0000h engine and prefetch engine stall.
Return from subroutine. Transfers control to the instruction
RETURN 0011b 68C0 0000h following the last CALL.
RETURN_INT 0100b 6900 0000h | Return from interrupt subroutine.
CLEAR 1011b 6ACO0 0000h | Clear Execution Engine registers (4000h to 40FCh) to zero.

3.5.1.4 Read/Write Register Instructions

There are five instructions used to read or write registers in the CL-GD5464. These each have a
different format; the formats of these instructions are given in the respective instruction descrip-
tions.

READ_DEV_REGS can be used to read an arbitrary register from any unit in the CL-GD5464.
The register contents are stored in system memory at the offset specified in
PF_DEST _ADDR_3D. On the CL-GD5464, READ_DEV_REGS is limited to a single register for
each instruction.

The register to be read is specified in two fields. The MODULE_SELECT field indicates the inter-
nal module containing the register (see Table 3-43). The ADDR field specifies, within the module,
the register to be read.

WRITE_DEV_REGS is the analog of READ_DEV_REGS to write an arbitrary register. The
parameter(s) to be written follows the instruction in the display list. On the CL-GD5464,
WRITE_DEV_REGS is limited to a single register unless 2D Engine registers 480h through 4FCh
are the target.

The register to be written is specified in two fields. The MODULE_SELECT field indicates the
internal module containing the register (see Table 3-43). The ADDR field specifies, within the
module, the register to be written.

WRITE_REGISTER is used to write a contiguous set of the CL-GD5464 3D registers. The instruc-
tion contains two fields that select the first register that is to be written and a count specifying the
number of registers to be written. The parameters that are to be written follow the instruction in
the display list. This instruction can also be used in Coprocessor Direct mode.

WRITE_DEST_ADDR is used to write an offset to the PF_DEST_ADDR_3D register. This offset
is subsequently used by READ_DEV_REGS.

Copyright 1996 — Cirrus Logic Inc. 3-43 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

WRITE_PFCTRL_REG is used to write directly to the PF_CTL_3D register at 4404h or the
PF_FB_SEG_3D register at 440Ch.

3.5.2 Instruction Field Tables

This section defines the common fields in the instructions. These descriptions are in no particular
order. They are referenced in the descriptions of the individual instructions that use them.

3.5.2.1 STALL

The STALL bit is in all the CL-GD5464 instructions. It is always bit 26. If the STALL bit is set, all
DRAW instructions that have been issued are completed before beginning the current instruction
(the one with the STALL bit set).

3.5.2.2 Drawing Instruction INSTR_MODIFIER Field

These bits are used in conjunction with the parameters to define just how the drawing instruction
is to be executed. Many of these bits can be used in combination to obtain the desired effect. See
the sample programs.

Table 3-41. Drawing Instructions INSTR_MODIFIER Field

INSTR_MODIFIER | Bits Description

Next word contains additional modifiers (for further expansion). This bit must be

MODIFIER_EXP 25 ‘0’ on the CL-GD5464.

Initial triangle span widths required (for Area 1 and Area 2). Allows drawing poly-

INITIAL_WIDTH 24 gons that have an initial width that is non-zero.

Fetch existing color buffer pixels. Turn destination read on. This is used for color
FETCH_COLOR 23 range compare and mask as well as alpha blending when the blending co-effi-
cient is stored with the data in the frame buffer.

Load alpha registers A_3D, DA_MAIN_3D and DA_ORTHO_3D. Used for fog or

ALPHA_LOAD 22 light gradient write.
Dither polygon using PATTERN_RAM as dither pattern. This improves color qual-
DITHER 21 . A)
ity during lighting and non-3D shading process.
PATTERN 20 Pattern polygon using PATTERN_RAM
STIPPLE 19 Stipple polygon for transparency using PATTERN_RAM
LIGHTING 18 Global enable for lighting

00: Texture mapping off

01: Reserved

10: Linear texture mapping

11: Perspective-corrected texture mapping

TEXTURE_MODE 17:16

RESERVED 15:14 | Reserved for expansion
Z_ON 13 Z depth function on: 3D operation
GOURAUD 12 Interpolate colors. The delta color parameters are used to obtain color gradients.

Must be ‘0’ for DRAW_POINT.

September 1996 3-44 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

3.5.2.3 TEST/WAIT Instruction EVENT_MASK

3D PROGRAMMER'’S GUIDE

This field is individual bits rather than encoded values. This allows multiple conditions to be tested
in a single instruction.

Table 3-42. TEST/WAIT Instruction EVENT_MASK
Bit | Hex Value Event Name Description Reset By:
10 | 0x400 | DISPLAY_LIST SWITCH Set by system software to indicate that | o ¢\ e
- - display can be switched to a new buffer
9 0x200 COMMAND_FIFO_NOT_EMPTY 2D/3D command FIFO is not empty BLT engine
8 0x100 BLT_ENGINE_BUSY Neither BLT_BUSY nor BLT_READY | g 1 opgine
- - are true
7 0x080 HOSTXY_UNIT_BUSY HostXY unit is busy XY unit
6 0x040 EXECUTION_ENGINE_BUSY Execution engine is busy Er’]‘gicn“;"’”
5 0x020 | POLY_ENGINE_BUSY 3D engine is busy Polygon
engine
4 0x010 Z_BUFFER_COMPARE Z-compare produces true result
3 0x008 CRT_DISPLAY_BUFFER_SWITC | CRT Controller switches banks; used | Next CRT
H for double buffer of display screen VSYNC
CRT vertical counter equals | NextCRT
2 0x004 CRT_LINE_COMPARE LINE_COMPARE VSYNG
CRT vertical counter equals CRT | Next CRT
1 0x002 CRT_EVSYNC VSYNC END VSYNC
CRT vertical counter equals CRT | Next CRT
0 0x001 CRT_VSYNC VSYNC START VSYNC
Copyright 1996 — Cirrus Logic Inc. 3-45 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.2.4 READ/WRITE_DEV_REGS Instruction MODULE_SELECT

This field specifies the internal module for the READ_DEV_REGS and WRITE_DEV_REGS
instructions.

Table 3-43. READ/WRITE_DEV_REGS Instruction MODULE_SELECT

Module Value Description
VGAMEM 00 000b | VGA register set (I/O, palette, video CRT, cursor)
VGAFB 00 001b | VGA frame buffer memory (AOOOOh—BFFFFh)
VPORT 00 010b | VPORT Control registers
LPB 00 011b | Local peripheral bus (general-purpose 1/0O)
MISC 00 100b | Miscellaneous (Rambust and serial)
ENG2D 00 101b | 2D engine registers
HD 00 110b | 2D engine host data port
FB 00 111b | Direct frame buffer memory
ROM 01 000b | ROM memory (read-only)
ENG3D 01 001b | 3D engine register set (offset 4000h—41FCh)
HOST_XY 01 010b | 3D engine host XY register set (offset 4200—42FCh)
HDATA_3D 01 011h | 3D (command) data port (offset 4800h—4BFCh)

September 1996 3-46 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.2.5 DRAW Instructions Register Skip Controls

For each of the three DRAW instructions, a number of conditions can cause registers to be
skipped as the parameters are loaded. For example, if mapped color is being used, there is no
requirement to load the blue or green color parameters. Table 3-44 summarizes the conditions
and shows which parameters are skipped for each.

Table 3-44. Register Skip Conditions

Condition Description Parqmeters Causes Condition
Skipped

The CL-GD5464 is programmed for
Mapped color CLUT mapped color. A single color | Greens, Blues | CONTROLO_3D[2:0] = 000b
value is stored per pixel.

Shading . . . _
disabled Color is static Delta colors Instruction [12] =0
Z-buffer off Z-buffer functions disabled Z, Delta Zs Instruction [13] =0
o WIDTH1, . _
No initial width | Polygon has vertex at top WIDTH2 Instruction [24] =0
Texture off No texture mapping u,V, DU, bV Instruction [17:16] = 0x
Perspective . . D2U, D2V, . . _
texture off Linear texture mapping D_ADD Instruction [17:16] = 10
glf‘fPHA—LOAD No alpha blending A, DA Instruction [22] =0

Copyright 1996 — Cirrus Logic Inc. 3-47 September 1996

3D PROGRAMMER'S GUIDE

3.5.3

Instruction Listings

CL-GD546X Software Technical Reference Manual

The following sections describe the instructions in detail. The descriptions are ordered alphabeti-

cally.

Table 3-45. Instruction Descriptions

September 1996

Instruction Section Page
BRANCH 3531 page 49
CALL 3.5.3.2 page 50
C_BRANCH 3.5.33 page 51
CLEAR 3534 page 52
DRAW_LINE 3.5.3.5 page 53
DRAW_POINT 3.5.3.6 page 55
DRAW_POLYGON 3537 page 56
IDLE 3.5.3.8 page 59
IDLE_INT 3.5.3.9 page 60
INTERRUPT ENABLE CONTROL 3.5.3.10 page 61
NC_BRANCH 3.5.3.11 page 62
NOP 3.5.3.12 page 63
READ_DEV_REGS 3.5.3.13 page 64
RETURN 3.5.3.14 page 65
RETURN_INT 3.5.3.15 page 66
TEST 3.5.3.16 page 67
WAIT 3.5.3.17 page 68
WRITE_DEST_ADDR 3.5.3.18 page 69
WRITE_DEV_REGS 3.5.3.19 page 70
WRITE_PFCTRL_REG 3.5.3.20 page 71
WRITE_REGISTER 3.5.3.21 page 72
3-48 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.1 BRANCH

The 3D engine transfers control within the display list. If it is not already in Display List mode, it
enters Display List mode.

Table 3-46. BRANCH Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 00111b -
STALL 26 0/1 Section 3.5.2.1
(Reserved) 25:22 0 -

OFFSET_ADDR 21:2 — -

(Reserved) 1:0 0 -

Functional Description

The BRANCH instruction transfers control to the OFFSET_ADDR. This is an unconditional trans-
fer. No return address is saved. If the 3D engine is not already in Display List mode, execution of
this instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE_ADDR_3D to determine the virtual address in
system memory of the target instruction.

Copyright 1996 — Cirrus Logic Inc. 3-49 September 1996

3D PROGRAMMER'S GUIDE

3.5.3.2 CALL

CL-GD546X Software Technical Reference Manual

The 3D engine transfers control within the display list. If it is not already in Display List mode, it
enters Display List mode. The return address is saved.

Table 3-47. CALL Instruction Format
Field Bits | Value Reference
OP_CODE 31:27 | 01010b -
STALL 26 0/1 Section 3.5.2.1
(Reserved) 25:22 0 -
OFFSET_ADDR 21:2 - -
(Reserved) 1:0 0 -

Functional Description

The CALL instruction transfers control to the OFFSET_ADDR. This is an unconditional transfer.
The return address is saved. If the 3D engine is not already in Display List mode, execution of this

instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE-ADDR_3D to determine the virtual address in
system memory of the target instruction.

The CL-GD5464 stores a single return address. If a CALL is executed within a subroutine, the first
return address is overwritten.

September 1996

3-50

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.3 C_BRANCH

The 3D engine conditionally transfers control within the display list. If it is not already in Display
List mode, it enters Display List mode.

Table 3-48. C_BRANCH Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 01000b -
STALL 26 0/1 Section 3.5.2.1
(Reserved) 25:22 0 -

OFFSET_ADDR 21:2 — -

(Reserved) 1:0 0 -

Functional Description

The C_BRANCH instruction transfers control to the OFFSET_ADDR if the condition flag is TRUE.
No return address is saved. If the 3D engine is not already in Display List mode, execution of this
instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE-ADDR_3D to determine the virtual address in
system memory of the target instruction.

C_BRANCH is typically preceded with a TEST instruction that sets the condition flag to TRUE or
FALSE.

Copyright 1996 — Cirrus Logic Inc. 3-51 September 1996

3D PROGRAMMER'S GUIDE

3.5.3.4 CLEAR

The 3D Engine Parameter registers are setto ‘0.

Table 3-49. CLEAR Instruction Format
Field Bits | Value Reference
OP_CODE 31:27 | 01101b -
STALL 26 0/1 Section 3.5.2.1
SUB_OPCODE | 25:22 | 0101b -
(Reserved) 21:0 0 -

Functional Description

The CLEAR instruction writes Os to registers 0x4000 through 0x40FC.

September 1996

3-52

CL-GD546X Software Technical Reference Manual

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.5 DRAW_LINE

This instruction draws a line as specified in the instruction modifiers and the parameter list.

Table 3-50. DRAW_LINE Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 00001b -
STALL 26 0/1 Section 3.5.2.1
INSTR_MODIFIER | 25:12 - Section 3.5.2.2
ADDR 11:6 0) -
COUNT 5:0 - -

Functional Description

The DRAW_LINE instruction fetches and loads parameters into 3D Engine registers as specified
in the COUNT field and the INSTR_MODIFIER field. It then draws a line.

The ADDR field specifies the first parameter to be loaded. This is essentially always programmed
to zero so that X_3D is the first parameter.

The COUNT field specifies the number of parameters that follow the instruction. This can vary
from six to over 20. Table 3-52 shows the order of the parameter and the ones that skipped if spec-
ified conditions are extant. The conditions are covered in Section 3.5.2.5.

Lines can be either X-major or Y-major (see Section 3.3.1). Table 3-51 summaries the registers
the two increments must be programmed into. For Y-major lines, the Y-increment must always be
positive (Y-major lines must be drawn from lower addresses to higher addresses, just as polygons
are always drawn from the top down).

Table 3-51. Increments for DRAW_LINE

Line X-Increment Y-Increment
X-Major DX_MAIN_3D: 0x4014 +1.0 DWIDTH2-3D: 0x4028 | (signed value)
Y-Major DX_MAIN_3D: 0x4014 | (signed value) | DWIDTH2_3D: 0x4028 +1.0

Copyright 1996 — Cirrus Logic Inc. 3-53 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

Table 3-52. DRAW_LINE Parameter Order

addr | Name | Mepped | Shading | z ON | \WE | FUERREE | A olE-

Off Off Off

Main Drawing Parameters

0x4000 X_3D

0x4004 Y_3D

0x4008 R_3D

0x400C G_3D Skip

0x4010 B_3D Skip

0x4014 | DX_MAIN_3D

0x4018 Y_COUNT_3D

0x401C WIDTH1_3D

0x402C DR_MAIN_3D Skip

0x4030 | DG_MAIN_3D Skip

0x4034 | DB_MAIN_3D Skip

0x4044 Z. 3D Skip

0x4048 DZ_MAIN_3D Skip

Texture Map Parameters

0x4050 V_3D Skip

0x4054 uU_3D Skip

0x4058 DV_MAIN_3D Skip

0x405C | DU_MAIN_3D Skip

0x4068 D2V_MAIN_3D Skip Skip

0x406C D2U_MAIN_3D Skip Skip

Alpha Blending Parameters

0x40C0 A_3D Skip

0x40C4 | DA_MAIN_3D Skip

September 1996 3-54 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.6 DRAW_POINT

This instruction draws a point as specified in the instruction modifiers and the parameter list.

Table 3-53. DRAW_LINE Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 00000b -
STALL 26 0/1 Section 3.5.2.1
INSTR_MODIFIER | 25:12 - Section 3.5.2.2
ADDR 11:6 0) -
COUNT 5:0 - -

Functional Description

The DRAW_POINT instruction fetches and loads parameters into 3D Engine registers as speci-
fied in the COUNT field and the INSTR_MODIFIER field. It then draws a single point.

The ADDR field specifies the first parameter to be loaded. This is essentially always programmed
to zero so that X_3D is the first parameter.

The COUNT field specifies the number of parameters that follow the instruction. This can vary
from three to eight. Table 3-54 shows the order of the parameter and the ones that are skipped if
specified conditions are extant. The conditions are covered in Section 3.5.2.5.

Table 3-54. DRAW_POINT Parameter Order

Mapped | Z ON Texture ALPHA _

Addr Name Color | Off | Mapping Off | LOAD Off

Main Drawing Parameters

0x4000 X_3D

0x4004 Y_3D

0x4008 R 3D

0x400C G_3D Skip

0x4010 B_3D Skip

0x4044 Z 3D Skip

Texture Map Parameters

0x4050 V_3D Skip

0x4054 U_3D Skip

Copyright 1996 — Cirrus Logic Inc. 3-55 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.3.7 DRAW_POLYGON

This instruction draws a polygon as specified in the instruction modifiers and the parameter list.

Table 3-55. DRAW_LINE Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 00010b -
STALL 26 0/1 Section 3.5.2.1
INSTR_MODIFIER | 25:12 - Section 3.5.2.2
ADDR 11:6 0) -
COUNT 5:0 - -

Functional Description

The DRAW_POLYGON instruction fetches and loads parameters into 3D Engine registers as
specified in the COUNT field and the INSTR_MODIFIER field. It then draws a polygon.

The 3D engine interpolates the position of pixels unto an X, Y, Z grid located in either local memory
or system memory. See Section 3.3. The interpolated positions and transparencies are dependent
on the X, Y, and Z parameters supplied to the 3D engine for each polygon. Colors are also applied
during this interpolation process from multiple sources:

. From the color ramp interpolators for Gouraud shading

. From constant values located in the color registers

. From texture maps located in local or system memory

As the color sources are applied to the 3D engine, operators are applied to control the lighting,

fogging, and blending. Texture mapping operators are also applied to filter, blend, copy, and ‘decal’
texels as the traverse the CL-GD5464 3D engine data path.

The ADDR field specifies which is the first parameter to be loaded. This is essentially always pro-
grammed to zero so that X_3D is the first parameter.

The COUNT field specifies the number of parameters that follow the instruction. This can vary
from seven to over 30. Table 3-56 shows the order of the parameter and the ones that are skipped
if specified conditions are extant. The conditions are covered in Section 3.5.2.5.

Table 3-56. DRAW_POLYGON Parameter Order

. Initial .| ALPHA_
Address Name Mapped Shadlng Z ON Width Texture | Perspective LOAD
Color Disabled Off Off Off Off Off

Main Drawing Parameter

0x4000 X_3D
0x4004 Y_3D
0x4008 R_3D

September 1996 3-56 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Table 3-56. DRAW_POLYGON Parameter Order (cont.)

Address| Name | Mapped | Shading | Z ON | \Gf | Texture |perspective | | c 0~
Off Off

0x400C G_3D Skip

0x4010 B_3D Skip

0x4014 DX_MAIN_3D

0x4018 Y_COUNT_3D

0x401C WIDTH1_3D Skip

0x4020 WIDTH2_3D Skip

0x4024 DWIDTH1_3D

0x4028 DWIDTH2_3D

0x402C DR_MAIN_3D Skip

0x4030 DG_MAIN_3D Skip Skip

0x4034 DB_MAIN_3D Skip Skip

0x4038 | DR_ORTHO 3D Skip

0x403C DG_ORTHO_3D Skip

0x4040 DB-ORTHO_3D Skip

0x4044 Z 3D Skip

0x4048 DZ_MAIN_3D Skip

0x404C | DZ_ORTHO_3D Skip

Texture Map Parameter

0x4050 V_3D Skip

0x4054 u_3D Skip

0x4058 DV_MAIN_3D Skip

0x405C DU_MAIN_3D Skip

0x4060 | DV_ORTHO_3D Skip

0x4064 | DU_ORTHO 3D Skip

0x4068 | D2V_MAIN_3D Skip Skip

0x406C D2U_MAIN_3D Skip Skip

oxa070 | DZV-ORTHO- Skip Skip

oxa074 | PPU-QRTHO- Skip Skip

Copyright 1996 — Cirrus Logic Inc. 3-57 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

Table 3-56. DRAW_POLYGON Parameter Order (cont.)

. Initial . ALPHA_
Address Name Mapped S_hadmg Z_ON Width Texture | Perspective LOAD
Color Disabled Off Off Off
Off Off
DV_ORTHO _) .
0x4078 ADD_3D Skip Skip
DU_ORTHO _ . .
0x407C ADD_3D Skip Skip
Alpha Blending Parameters
0x40C0 A_3D Skip
0x40C4 DA_MAIN_3D Skip
0x4048 DA_ORTHO_3D Skip

September 1996 3-58 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.8 IDLE

The 3D engine enters the Idle state (Coprocessor mode).

Table 3-57. IDLE Instruction Format

Field Bits Value Reference
OP_CODE 31:27 | 01101b -
STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 | 0000b -

(Reserved) 21:0 0 -

Functional Description

The IDLE instruction places the CL-GD5464 into the idle state. It no longer processes the display
list. A BRANCH, C_BRANCH, NC_BRANCH, or CALL can be used to re-initiate display list pro-
cessing.

In the Idle state, all internal registers are exposed for direct control by the host.

Copyright 1996 — Cirrus Logic Inc. 3-59 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.3.9 IDLE_INT

The 3D engine enters the idle state (Coprocessor mode) and generates an interrupt to the host (if
enabled).

Table 3-58. IDLE_INT Instruction Format

Field Bits Value Reference
OP_CODE 31:27 | 01101b -
STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 | 0001b -

(Reserved) 21:.0 0 -

Functional Description

When executed in Display List mode, the IDLE_INT instruction ceases display list processing and
generates an interrupt on INTA#. RETURN_INT can be used to resume display list processing.

IDLE_INT is typically used to signal the end of a display list, or that the engine has reached a point
where guidance from the host is required.

September 1996 3-60 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

3.5.3.10 Interrupt Enable Control

3D PROGRAMMER'’S GUIDE

Interrupt enable bits are set or cleared according the SET_CLR field and the INT_MASK field.

Table 3-59. IDLE_INT Instruction Format
Field Bits | Value Reference
OP_CODE 31:27 | 01111b —
STALL 26 0/1 Section 3.5.2.1
0 = Clear,
SET_CLR 25 0/1 1= Set
(Reserved) 24:5 0 -
INT_MASK 4.0 Table 3-60

Functional Description

The INTERRUPT instruction either sets or clears flip-flops that enable events to set bits in the
PF_STATUS_ 3D register. The flip-flops are chosen according to the SET_CLR field and the
INT_MASK field.

The SET_CLR field controls whether bits are to be set to ‘1’ or cleared to ‘0.

The INT_MASK field controls which interrupt enables are to be set or cleared. Since this field is

bit-sensitive (rather than encoded), multiple bits can be set or cleared at once.

Table 3-60. INTERRUPT Instruction INT_MASK Field
INT_MASK Interrupt Name PF_STATUS_3D Reset By
1 0000b Z_COLLISION Bit 4 Read of STATUS_3D (0x413C)
0 1000b DISPLAY_BUFFER_SWITCH Bit 3 Next CRT VSYNC
0 0100b CRT_LINE_COMPARE Bit 2 Next CRT VSYNC
0 0010b CRT_EVSYNC Bit 1 Next CRT VSYNC
0 0001b CRT_VSYNC Bit 0 Next CRT VSYNC

Copyright 1996 — Cirrus Logic Inc.

3-61

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.3.11 NC_BRANCH

The 3D engine conditionally transfers control within the display list. If it is not already in Display
List mode, it enters Display List mode.

Table 3-61. NC_BRANCH Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 01001b -
STALL 26 0/1 Section 3.5.2.1
(Reserved) 25:22 0 -

OFFSET_ADDR 21:2 — -

(Reserved) 1:0 0 -

Functional Description

The NC_BRANCH instruction transfers control to the OFFSET_ADDR if the condition flag is
FALSE. No return address is saved. If the 3D engine is not already in Display List mode, execution
of this instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE-ADDR_3D to determine the virtual address in
system memory of the next instruction.

NC_BRANCH is typically preceded with a TEST instruction that sets the condition flag to TRUE
or FALSE.

September 1996 3-62 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.12 NOP

The 3D engine advances the instruction address pointer.

Table 3-62. NOP Instruction Format

Field Bits Value Reference
OP_CODE 31:27 | 01101b -
STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 | 0010b -

(Reserved) 21:0 0 -

Functional Description

The IDLE instruction does nothing except to advance the instruction pointer and possibly execute
a STALL. This can be used to ensure the 3D engine has finished drawing and the pre-fetch pipe-
line is clear.

Copyright 1996 — Cirrus Logic Inc. 3-63 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.3.13 READ_DEV_REGS

The indicated register is read. The results are stored in system memory at the address specified
in PF_DEST_ADDR_3D.

Table 3-63. READ_DEV_REGS Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 00110b -
STALL 26 0/1 Section 3.5.2.1
MODULE_SELECT | 25:21 - Table 3-43
(Reserved) 20:17 0 -
ADDR 16:6 - -
COUNT 5:0 1 -

Functional Description

The READ_DEV_REGS instruction fetches the contents of the specified register and places the
contents into the location in system memory specified in PF_DEST_ADDR_3D.
PF_DEST _ADDR_3D is loaded with the execution of a WRITE_DEST_ADDR instruction.

This instruction is used to write the CL-GD5464 status to system memory while processing a dis-
play list. This instruction waits for the 3D engine to be idle before it is executed. This allows the
instruction stream processing to communicate its status to the system software, thus providing a
means of synchronization between 3D operations and 2D operations.

The MODULE_SELECT field indicates which module in the CL-GD5464 contains the register to
be read. This field in defined in Table 3-43.

The ADDR field indicates the register within the module is to be read.

COUNT must be programmed to ‘1’.

September 1996 3-64 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.14 RETURN

The 3D engine returns from a subroutine.

Table 3-64. RETURN Instruction Format

Field Bits Value Reference
OP_CODE 31:27 | 01101b -
STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 | 0011b -

(Reserved) 21:0 0 -

Functional Description

The RETURN instruction restores the state information saved by a CALL instruction and resumes
instruction stream processing at the instruction following the CALL.

The CL-GD5464 supports only a single-level subroutine.

Copyright 1996 — Cirrus Logic Inc. 3-65 September 1996

3D PROGRAMMER’S G

3.5.3.15 RETURN_IN

UIDE

T

CL-GD546X Software Technical Reference Manual

The 3D engine restores the state information saved by an INT and resumes display list processing

at the location following the INT.

Table 3-65. RETURN_INT Instruction Format

Field Bits | Value Reference

OP_CODE 31:27 | 01101b -

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 | 0100b -

El 21 0/1

DA 20 0/1

CF 19 0/1

(Reserved) 18:0 0

Functional Description

The RETURN_INT instruction restores the instruction state saved by an INT and resumes display

list processing.

Table 3-66 summarizes the control bits in 21:19.

Table 3-66. State Information Restoration Control for RETURN_INT
RETURN_INT Field Field Specific Field(s) Effected
El (bit 21) Interrupt enables
DA (bit 20) Destination address
CF (bit 19) Condition flag

September 1996

3-66 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.16 TEST

The 3D engine tests one or more events and sets the condition flag based on the outcome.

Table 3-67. TEST Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 10000 -
STALL 26 0/1 Section 3.5.2.1
AND_OR 25 0/1 -

NOT 24 0/1 -
(Reserved) 23:11 0 -
EVENT_MASK 10:0 - Table 3-42

Functional Description

The TEST instruction tests one or more events as specified in the EVENT_MASK and sets or
resets the condition flag based on the outcome.

The AND_OR bit and NOT bit control how the events are combined. This is summarized in
Table 3-68.

Table 3-68. TEST Instruction Control Bits

AND_OR | NOT ':Inug\l/)g\r?'f_niAtgf Instruction Name C-Flag is set if
X 0 1 TEST Single event is TRUE
1 0 2 or more TEST_AND All events are TRUE
0 0 2 or more TEST_OR Any event is TRUE
X 1 1 NTEST Single event is FALSE
1 1 2 or more NTEST_AND All events are FALSE
0 1 2 or more NTEST_OR Any event is FALSE

Copyright 1996 — Cirrus Logic Inc. 3-67 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.3.17 WAIT

The 3D engine tests one or more events and waits before continuing with the display list.

Table 3-69. WAIT Instruction Format
Field Bits | Value Reference
OP_CODE 31:27 | 01110b -
STALL 26 0/1 Section 3.5.2.1
AND_OR 25 01 -
NOT 24 0/1 -
(Reserved) 23:11 0 -
EVENT_MASK 10:0 - Table 3-42

Functional Description

The WAIT instruction tests one or maore events as specified in the EVENT_MASK and waits before
continuing with the display list. The WAIT instruction does not change the condition flag.

The AND_OR bit and NOT bit control how the events are combined. This is summarized in

Table 3-70.
Table 3-70. WAIT Instruction Control Bits
Number of ‘1’ bits . .
AND_OR | NOT in EVENT_MASK Instruction Name Waits for
X 0 1 TEST Single event to be TRUE
1 0 2 or more TEST_AND All events to be TRUE
0 0 2 or more TEST_OR Any event to be TRUE
X 1 1 NTEST Single event to be FALSE
1 1 2 or more NTEST_AND All events to be FALSE
0 1 2 or more NTEST_OR Any event to be FALSE
September 1996 3-68 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.18 WRITE_DEST_ADDR
The 3D engine writes the OFFSET_ADDR value to PF_DEST_ADDR_3D.

Table 3-71. WRITE_DEST_ADDR Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 01011b -
STALL 26 0/1 Section 3.5.2.1
(Reserved) 25:22 0 -

OFFSET_ADDR 21:2 - -

(Reserved) 1 0 -

INCREMENT 0 0/1 -

Functional Description

The WRITE_REGISTER instruction transfers the OFFSET_ADDR field to PF_DEST_ADDR_3D.
Bit O of the instruction is transferred to bit 0 (the INCREMENT bit) of PF_DEST_ADDR_3D. The
PF_DEST_ADDR_3D register specifies the offset for READ_DEV_REG.

Copyright 1996 — Cirrus Logic Inc. 3-69 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.5.3.19 WRITE_DEV_REGS

The indicated registers are written with words following the instruction word.

Table 3-72. WRITE_DEV_REGS Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 00101b -
STALL 26 0/1 Section 3.5.2.1
MODULE_SELECT | 25:21 - Table 3-43

BYTE_ENABLES 20:17 0 -

ADDR 16:6 - -

COUNT 5:0 1 -

Functional Description

The WRITE_DEV_REGS instruction fetches the word(s) following the instruction and writes them
into the indicated register(s).

This instruction waits for the 3D engine to be idle before it is executed. This allows the instruction
stream processing to communicate its status to the system software, thus providing a means of
synchronization between 3D operations and 2D operations.

The MODULE_SELECT field indicates the module in the CL-GD5464 containing the register to
be written. This field in defined in Table 3-43.

The BYTE_ENABLES field indicates which bytes are to be written. Bit 20 corresponds to the most-
significant byte; bit 17 corresponds to the least-significant byte. Typically, this field is all ‘1's except
for some single-register operations.

The ADDR field indicates the first (or only) register within the module to be written.
The COUNT field indicates the number of registers to be written.

The WRITE_DEV_REGS is used to access other devices with the CL-GD5464 while processing
a display list. For example, this allows texture map palettes to be loaded into the TLUT after a tex-
ture-mapped polygon is completed.

September 1996 3-70 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.20 WRITE_PFCTRL_REG

The 3D engine writes the PF_CTL_DATA field to either the PF_CTL_3D register or the
PF_FB_SEL_3D register.

Table 3-73. WRITE_PFCTRL_REG Instruction Format

Field Bits | Value Reference
OP_CODE 31:27 | 10001b -
STALL 26 0/1 Section 3.5.2.1
RSEL 25 0/1 -
(Reserved) 24:16 0 -
PF_CTL_DATA 15:0 - -

Functional Description

The WRITE_PFCTRL_REG instruction transfers the PF_CTL_DATA field to the least-significant
16 bits of either PF_CTL_3D or PF_FB_SEG_3D.

The PF_CTL_3D register is not otherwise accessible from display list processing. Care must be
exercised if this register is changed during engine execution. Place a NOP with STALL (that waits
until the engine is idle) immediately in front of this instruction in the display list.

RSEL specifies which of the two object registers is to be loaded, as shown in Table 3-74.

Table 3-74. WRITE_PFCTRL_REG Instruction RSEL Field

RSEL Destlr_1at|on Address Bits Used
Register
0 PF_CRL_3D 0x4404 15:0
1 PF_FB_SEG_3D 0x440C 10:0

Copyright 1996 — Cirrus Logic Inc. 3-71 September 1996

3D PROGRAMMER'S GUIDE

3.5.3.21 WRITE_REGISTER

CL-GD546X Software Technical Reference Manual

The 3D engine writes one or more contiguous registers. This instruction can be used in coproces-
sor mode as well as Display List mode.

Table 3-75. WRITE_REGISTER Instruction Format

Field Bits | Value Reference

OP_CODE 31:27 | 00011b -

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:13 0 -

C 12 0/1 -

ADDR 11:6 - -

COUNT 5:0 - -

Functional Description

The WRITE_REGISTER instruction transfers the next COUNT DWORDs in the display to 3D reg-
isters beginning with the register specified in the C field and ADDR field. This instruction can take
advantage of the PCI burst write sequence.

If the COUNT field is ‘0’, no registers are written.

The C bit indicates whether the ADDR field is an offset from 0x4000h or 0x4100. See Table 3-76.

Table 3-76. WRITE_REGISTER Instruction C Bit
C (Bit 12) Base Registers
Address 9
0 0x4000 Drawing
1 0x4100 Control

September 1996

3-72

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.6

3.6.1

3D Register Header Files

The following four header files are used by the programming examples for the CL-GD5464.
Included are register definitions, instruction opcodes, structure definitions, and other generally
useful information. The # defines that could be used as a basic for programming the CL-GD5464.
The files ‘I3types.h’ and ‘modemon.h’ are support header files, included for completeness.

trm.h
/***

*

* Modul e: trmh

*

* Revi si on: 1.00
* Dat e: August 30, 1996

* Aut hor : Cirrus Logic Austin Design Center

hkhkhkkhkhkhhkhkhhhhhhkhhhhhhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhdhddhdddhrddrrdrx*k

*

* Modul e Descri ption:

* Regi ster, instruction, instruction nodifiers and other
* defines used by this library

LR I I R I I I R I I I I R I I I R I I I I S I O R I S S I

* Changes:

**/

#i fndef _TRM H_
#define TRMH_

#i ncl ude <string. h> /1 menset ()
#i nclude "I 3types. h" /1 DWORD, etc
#i nclude "I 3struct. h" /1l LL _Texture, etc

/1l Set a register to a given val ue
/1
#def i ne SETREQreg, val ue) \

Copyright 1996 — Cirrus Logic Inc. 3-73 September 1996

3D PROGRAMMER'S GUIDE

(*(DWORD *)(LL_State.pRegs + reg)

/1 dear

/1

#defi ne CLEAR_RANGE(St art Reg,

a range of registers

EndRegq)

CL-GD546X Software Technical Reference Manual

= (DWORD) val ue)

\

menset ((void *)(LL_State.pRegs + (StartReg)), 0, ((EndReg) - (StartReg)+1))

/1 Laguna 3D instruction set

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/'l instruction nodifier

#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

September 1996

DRAW POl NT
DRAW LI NE

DRAW POLY

VRl TE_REG STER
READ_REG STER
WRI TE_DEV_REGS
READ DEV_REGS
BRANCH
C_BRANCH
NC_BRANCH

CALL

VRl TE_DEST_ADDR
| NSTR_EXT

WAl T

WAl T_AND

NVWAI T_AND

WAI T_OR

NWAI T_OR
CLEAR I NT
SET_I NT

TEST

TEST_AND
NTEST_AND
TEST_OR
NTEST_OR

WRI TE_PREFETCH_CONTROL

set for

STALL
GOURAUD
Z ON
COLOR OFF

3-74

0x00000000
0x08000000
0x10000000
0x18000000
0x20000000
0x28000000
0x30000000
0x38000000
0x40000000
0x48000000
0x50000000
0x58000000
0x68000000
0x72000000
0x72000000
0x73000000
0x70000000
0x71000000
0x78000000
0x7A000000
0x80000000
0x82000000
0x83000000
0x80000000
0x81000000
0x88000000

drawi ng instructions

0x04000000
0x00001000
0x00002000
0x00008000

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

TEXTURE_LI NEAR
TEXTURE_PERSPECTI VE
LI GHTI NG

STI PPLE

PATTERN

DI THER

ALPHA

FETCH COLOR
WARP_MODE

MODI FI ER_EXPANSI ON

/1 instruction extension opcodes

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

/] core

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

| DLE
| DLE_I NT
NOP

RETURN

| NT_RETURN
CLEAR

3D registers -

X_3D
Y 3D

R 3D

G 3D

B 3D

DX_MAI N_3D
Y_COUNT_3D
W DTHL_3D
W DTH2_3D
DW DTHL_3D
DW DTH2_3D
DR_MAI N_3D
DG_MAI N_3D
DB_MAI N_3D
DR_ORTHO 3D
DG_ORTHO 3D
DB_ORTHO 3D
Z 3D

DZ_MAI N_3D
DZ_ORTHO 3D

Copyright 1996 — Cirrus Logic Inc.

3-75

0x00020000
0x00030000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000
0x01000000
0x02000000

0x00000000
0x00400000
0x00800000
0x00c00000
0x01000000
0x01400000

0x4000
0x4004
0x4008
0x400c
0x4010
0x4014
0x4018
0x401c
0x4020
0x4024
0x4028
0x402c
0x4030
0x4034
0x4038
0x403c
0x4040
0x4044
0x4048
0x404c

3D PROGRAMMER'’S GUIDE

non byt e-swappi ng apperture begi nning at 0x4000

September 1996

3D PROGRAMMER'S GUIDE

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i

#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne

ne

ne

ne

V_3D
U 3D

DV_MAI N_3D
DU_MAI N_3D
DV_ORTHO 3D
DU_ORTHO 3D
D2V_MAI N_3D
D2U_MAI N_3D
D2V_ORTHO 3D
D2U_ORTHO 3D
DV_ORTHO_ADD_3D
DU_ORTHO ADD_3D

A 3D
DA_MAI N_3D
DA_ORTHO 3D

OPCODE_3D

/1 3D Control registers

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

September 1996

CONTROL_MASK_3D
CONTROLO_3D

COLOR_M N_BOUNDS_3D
COLOR_MAX_BOUNDS_3D
CONTROL1_3D
BASEO_ADDR 3D
BASE1_ADDR 3D

TX_CTLO_3D
TX_XYBASE_3D
TX_CTL1_3D
TX_CTL2_3D
COLORO_3D
COLORL_3D

Z COLLI DE_3D
STATUSO_3D
PATTERN_RAM 0_3D
PATTERN_RAM 1_3D
PATTERN_RAM 2_3D
PATTERN_RAM 3_3D
PATTERN_RAM 4_3D

3-76

CL-GD546X Software Technical Reference Manual

0x4050
0x4054
0x4058
0x405c¢
0x4060
0x4064
0x4068
0x406¢c
0x4070
0x4074
0x4078
0x407c

0x40C0
0x40C4
0x40C8

0x40fc

0x4100
0x4104
0x4108
0x410c
0x4110
0x4114
0x4118

0x4120
0x4124
0x4128
0x412C
0x4130
0x4134
0x4138
0x413C
0x4140
0x4144
0x4148
0x414c
0x4150

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne

PATTERN_RAM 5_3D
PATTERN_RAM 6_3D
PATTERN_RAM 7_3D
X_CLIP_3D
Y _CLIP_3D
TEX_SRAM CTRL_3D

/1 host_XY unit registers

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne HXY_BASEO_ADDRESS PTR 3D

ne
ne

ne HXY_BASE1_ADDRESS PTR 3D

ne
ne
ne

ne HXY_BASE2_ ADDRESS PTR 3D

ne
ne
ne
ne
ne

HXY_BASEO_START_XY_3D
HXY_BASEO_EXTENT_XY_3D

HXY_BASE1_OFFSETO_3D
HXY_BASE1_OFFSET1_3D
HXY_BASE1_LENGTH 3D

HXY_HOST_CTRL_3D
MAI LBOXO_3D
MAI LBOX1_3D
MAI LBOX2_3D
MAI LBOX3_3D

/1 3D prefetch unit registers

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

PF_BASE_ADDR 3D
PF_CTRL_3D
PF_FB_SEG 3D
PF_DEST_ADDR 3D

PF_I NST_ADDR 3D
PF_STATUS_3D

HOST _MASTER CTRL_3D
PF_I NST_3D

0x4154
0x4158
0x415c
0x4160
0x4164
0x4168

0x4200
0x4204
0x4208
0x4210
0x4214
0x4218
0x421C
0x4220
0x4240
0x4260
0x4264
0x4268
0x426C

0x4400
0x4404
0x440C
0x4408
0x4420
0x4424
0x4440
0x4480

3D PROGRAMMER'’S GUIDE

//**

/1

/1 Library initialization defines:

/1

/1 The follow ng are exanples of various usefu
/1 to Laguna 3d. They are not

/1 exanpl e

/1

Copyright 1996 — Cirrus Logic Inc.

3-77

defines that pertain
necessarily used in this progranm ng

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

//**

/1 Defines for pixel nodes (ControlO register)

#define Pl XEL_MODE | NDEXED O

#def i ne Pl XEL_MODE_332 1

#defi ne Pl XEL_MODE 565 2

#def i ne Pl XEL_MODE 555 3

#defi ne Pl XEL_MODE_A888 4

#defi ne Pl XEL_MODE_Z888 5

/1 Z Conpare nodes

#define LL_Z WRI TE_GREATER EQUAL 0x00000000 // True if new >= old
#define LL_Z WRI TE_GREATER 0x00000001 // True if new > old
#define LL_Z WRI TE_LESS EQUAL 0x00000002 // True if new <= old
#define LL_Z WRI TE_LESS 0x00000003 // True if new < old
#define LL_Z WRI TE_NOT_EQUAL 0x00000004 // True if new <> old
#define LL_Z WRI TE_EQUAL 0x00000005 // True if new = old
/1l Functional Z nodes

#define LL_Z MODE NORMAL 0x00000000 // Normal operation
#define LL_Z MODE_MASK 0x00000001 // Z not witten
#define LL_Z MODE _ALWAYS 0x00000002 // Z, color always wt
#define LL_Z MODE_ONLY 0x00000003 // Color not witten
#define LL_Z MODE HI T 0x00000004 // collision dtct only
/1 Color conpare controls

#define LL_COLOR_SATURATE_ENABLE 0x00000040 // for indexed node
#define LL_COLOR_SATURATE_DI SABLE 0x00000000 // (default)

#define LL_COLOR_COVPARE_I NCLUSI VE 0x00000400 // tc nodes

#defi ne LL_COLOR _COMPARE_EXCLUSI VE 0x00000000 // tc nodes (default)
#define LL_COLOR_COVPARE_BLUE 0x00000200 // blue (default off)
#define LL_COLOR_COVPARE_GREEN 0x00000100 // green (default off)
#define LL_CO.LOR_COVPARE_RED 0x00000080 // red (default off)

//**

/1
/1 Lighting source: Selects the value for the lighting multiplier
/1 - interpolated Iight fromthe polygon engi ne

September 1996 3-78 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/1 |l oad |lighting values as r,g,b conponents

/1 al so LL_GOURAUD rust be set in the flags

/1 thi s node uses Pol yengi ne col or registers

/1 - interpolated Iight fromthe al pha interpol ator
/1 | oad |ighting values as al pha conponents

/1 this node uses LA-interpolators

/1 - constant light fromthe COLORL register

/1

//**

#define LL_LI GHTI NG_| NTERP_RGB 0x00000000 // Using poly engine
#define LL_LI GHTI NG | NTERP_ALPHA 0x00000001 // Using LA interp.
#define LL_LI GHTI NG_CONST 0x00000002 // Constant Iight

//**

/1

/1 Al pha node: Magnitude of al pha blending will be taken from

/1 - constant al pha, use LL_Set Const ant Al pha(src/ new, dest/ ol d)
/1 this node uses LA-interpolators

/1 - interpol ated, variable alpha fromLA-interpolators

/1 this node al so uses LA-interpolators

/1 - alpha field fromthe frame buffer

/1
//**
#define LL_ALPHA CONST 0x00000000 // Constant al pha
#define LL_ALPHA | NTERP 0x00000002 // Using LA interp.
#define LL_ALPHA FRAME 0x00000003 // Using frane val ues

//**

/1

/1 Al pha destination: Selects where the second color input to the

/1 al pha nultiplier cones from

/1 - color fromthe frane buffer ("normal"™ al pha bl endi ng)

/1 - constant color (also called fog) from COLORO register

/1 - interpol ated, shaded color fromthe polygon engine (al so fog)
/1 al so LL_GOURAUD rust be set in the flags

/1 thi s node uses Pol yengi ne col or registers

/1

/1 Fog: Use aliases LL_FOG CONST and LL_FOG I NTERP to avoid fetching
/1 colors fromthe frane and to set the fog color.

/1

Copyright 1996 — Cirrus Logic Inc. 3-79 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

//**/

#define LL_ALPHA DEST_FRANVE 0x00000000 // Using frame col or
#define LL_ALPHA DEST_CONST 0x00000001 /1 Constant col or
#define LL_ALPHA DEST_| NTERP 0x00000002 // Using poly engine

/***
*

* Buf fer identification nunbers and Z stride info.

*
* Used with LL_InitBuffers()
*

**/

#define LL_I D BUFFER A 0 /* 1D of the primary buffer */
#define LL_I D BUFFER_B 1 /* I D of the secondary buffer */
#define LL_I D BUFFER Z 2 /* 1D of the Z buffer in RDRAM */

/1l function prototypes internal to this |ibrary

int LL_Init();

int LL_InitBuffers();
int LL Term nate();
LL_Vait();

void LL _print_state();
void LL_print_regs();

LL_Set Di spl ayBuf fer (TBuf fer *pBuf); /1 useful for debug

/1 display list programrng exanpl es

voi d dl _poi nt_set O(DNORD *pdwNext) ; /1 points
voi d dl _point_set 1(DNORD * pdwiNext) ;
voi d dl _poi nt_set 2(DNORD * pdwiNext) ;

voi d dl _line_set O(DWORD *pdwNext) ; /1 lines
void dl _I'ine_set1(DAORD *pdwNext) ;

void dl _poly_set O(DAORD *pdwNext) ; /'l polys
void dl _poly set 1(DAORD * pdwNext);
void dl _poly_set2(DAORD * pdwNext) ;
void dl _poly_ set 3(DAORD * pdwNext) ;
void dl _poly_set 3(DAORD * pdwNext) ;

September 1996 3-80 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/1 functions external to this library

extern DWORD Al | ocSystenivenory(DWORD dwSi ze) ;

extern void FreeSyst emvenory(DWORD hHandl e);

extern DWORD Get Li near Addr ess(DWORD hHandl e);

extern DAORD Cet Physi cal Address(DWORD hHandl e);

extern DWORD *CGet Regi st er Apperture();

extern BYTE *GCetLagunaApperture(int base);

extern int Get PrivateProfileString(char *, char *, char *, char *, int, char

*)'

#endif // _TRMH_

Copyright 1996 — Cirrus Logic Inc. 3-81 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.6.2 I3struct.h

/***

*

* Modul e: | 3struct. h

*

* Revi si on: 1.00

* Dat e: August 30, 1996

* Aut hor : Cirrus Logic Austin Design Center

hkhkhkkhkhkhhkhkhhhhhhkhhhhhhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhdhddhdddhrddrrdrx*k

* Modul e Descri ption:

* Various structures that support this small library

hkhkhkkhkhkhhkhkhhhhhhkhhhhhhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhdhddhdddhrddrrdrx*k

* Changes:

* DATE REVI SI ON DESCRI PTI ON AUTHOR

*

**/

#i f ndef _L3STRUCT_H_
#define L3STRUCT H_

/***

*

* LL Rect structure defines a general rectangular region
*

**/

t ypedef struct
{

DWORD | eft; /1 x1

DWORD t op; /1yl

DWORD ri ght; /Il x2

DWORD bottom /1 y2
} LL_Rect;

September 1996 3-82 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/***

*

* LL Color structure defines color by its conmponents or index
*

**/

typedef struct

{
uni on
{
st ruct /1 1f in true color node,
{
BYTE r; /1 Red conponent
BYTE g; /1 Green conponent
BYTE b; /1 Bl ue conponent
b
BYTE i ndex; /1 Index if in 8bpp i ndexed node
b
} LL_Col or;

/***

*
* LL Pattern structure holds the pattern to be stored in the

* PATTERN RAM regi sters. These values are used for pattern,
* dither or stipple (only one at a tine).

*

**/

t ypedef struct /1 pattern holding structure

{
DWORD pat[8]; /1 8 word pattern

} LL_Pattern;

/***

*

* Buffer information structure (buffers A B, Z, ...)

*

**/

t ypedef struct

Copyright 1996 — Cirrus Logic Inc. 3-83 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

{
/1 for this exanple, all buffers are in RDRAM
DWORD dwkl ags; /1 Buffer flags
DWORD dwAddr ess; /1l Buffer start byte address (abs linear)
DWORD dwPi t chByt es; /1 Pitch of a buffer in bytes
LL _Rect Extent; /1 Buffer |ocation offsets (video)
/1l these fields are not used, but are exanples of possible fields
/1 for buffers in system nenory
DWORD dwPhyAdr ; /1 Buffer physical address (system
DWORD dwpPi t chCode; /1l Pitch code of a buffer (systen)
DWORD hMem /1 Internal menory handl e (systen)
} TBuffer;

/***

*

* LL_Texture structure defines a texture map

*

**/

typedef struct

{
DWORD * dwAddr ess; /1l Pointer to texture storage |ocation
LL_Col or * Col Pal ette; /1 Pointer to palette if indexed
BYTE bMem /1 Index to the texture nmenory bl ock
DWORD dwkl ags; /1l Flags for the texture
WORD wWW dt h; /1 Texture X dinmension in texels
WORD wHei ght ; /1 Texture Y dinmension in texels
BYTE DbSi zeMask; /1 Encoded size 0=16,... Y[7:4], X 3:0]
BYTE bType; /1 Texture type
BYTE f I ndexed; /1 True for indexed textures
BYTE bLookupOffset; /1 Palette | ookup offset (indexed only)
BYTE bBpp; /1l Bits per pixel
BYTE bl D /1 Texture ID for the placenment nodul e
WORD wiXl oc; /1 X offset location in bytes
WORD wYl oc; /1 Y offset location in |ines
DWORD dwUsed; /1l Usage count (for priorities)

} LL_Texture;

September 1996 3-84 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/***
*

* TDi spl ayLi st structure defines a display list.

*

**/

typedef struct

{
/1 pdwNext points to the next available location within this
/1 display list to fill in the Laguna instruction.
/1 1t is used for parametarization routines that postincrenent
/1 this variable.
/1
DWORD * pdwiNext ;

/1 Menory handle for this display list as optained fromthe
/1l internal nmenory allocation function

/1

DWORD hMem

/1l Linear address of the display I|ist
/1
DWORD * pdwLi nPtr;

/1 Physical address for a display list is next; it can also

/1 be the address to the page table. This address has the

/1 appropriate format to be stored in the BASE* class registers
/1

DWORD dwPhyPtr ;

/1 The length of a display list in bytes

/1

DWORD dwlien;

/1l Safety margin for building the display |ist
/1

DWORD dwiMar gi n;

} TDi spl aylLi st;

/***

Copyright 1996 — Cirrus Logic Inc. 3-85 September 1996

3D PROGRAMMER'S GUIDE

* Control 0_3d register

*

bitfields

CL-GD546X Software Technical Reference Manual

**/

typedef struct

{
DWORD

DWORD
DWORD

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

Pi xel _Mode
Res1
Pi xel _Mask_Enabl e

Pi xel _Mask_Pol arity
Col or _Saturate_En
Red_Col or _Conpar e_En

G een_Col or _Conpar e_En:
Bl ue_Col or _Compare_En :

Col or _Conpar e_Mde
Al pha_Mode
Al pha_Dest _Col or _Sel

Al pha_Bl endi ng_Enabl e :

Z Stride_Control
Res2
Z Conpar e_Mde

Z Collision_Detect En :

Li ght _Src_Sel
Res3

Z Nbde

Res4

} TContr ol OReg;

P WP NPDMOPRPPNNPRPRPRPRPERPPRPP W

/1 Color frame buffer
/1 Reserved

/1 Enabl es pi xel masking

/1 Polarity of the pixel nasks
/1 Enabl es saturation in indexed
/1 Enabl es conpare to bounds for
/1 Enabl es conpare to bounds for green
/1 Enabl es conpare to bounds for blue
/1 Mask inclusivel/exclusive to bounds
/1 Sel ects al pha bl endi ng node

/1l Selects the DEST_RGB input to al pha
/1 Enabl es al pha bl endi ng

/1 16/8 bit Z depth

/1 Reserved

/1 Different Z conpare function

/1 Enables Z collision detection

/1l Selects the lighting source input

/1 Reserved

/1 Controls Z and col or
/1 Reserved

drawi ng node

node
red

updat e net hod

/***

*

* TSystem structure defines possible cached state information

*

**/

t ypedef struct

{

/1 Laguna 3D registers software cache.

These registers are

/1 cached here in order to avoid unnecessary setup with the

/1 possibly same val ues.
/1l need to be set,
/1 register

September 1996

is set only if

3-86

Every tine when one of these registers
the content of the cache is conpared and the
it differs fromthe new val ue.

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

/1
DWORD dwDA_MAI N;
DWORD dwDA_ORTHO,

uni on {
TCont r ol OReg Control 0;
DWORD dwCont r ol O;

b

dwCol or _M n_Bounds;
dwCol or _Max_Bounds;
dwBaseO;

dwBasel,;

dwTxCont r ol O;
dwTxXYBase;

dwCol or O;

dwCol or 1;
dwHXY_Basel Address_Ptr;
dwHXY_Basel O f setO;
dwHXYHost Cont r ol ;
dwrFet chCol or;

dwAl phaConst Sour ce;
dwAl phaConst Dest ;

/1l Buffer
TBuf f er
TBuf f er
TBuf f er

managenent
Buf Render ;
Buf Text ur es;
Buf Z;

/1 Display |ists managenent
TDi spl ayLi st DL;

/1
/1

/1

/1
/1

/1
/1
/1
/1

/1
/1
/1

/1
/1
/1

/1

/1 Non-register state infornmation

DWORD dwrl ags;

BYTE *pRegs;

BYTE *pFrane;

WORD wPCl _Interrupt;
WORD wPCl _Sl ot ;

DWORD dwWRAM
DWORD pi t ch;

Copyright 1996 — Cirrus Logic Inc.

/1
/1
/1
/1
/1

/1
/1

3-87

3D PROGRAMMER'’S GUIDE

Current value of DA MAIN 3D reg
Current value of DA ORTHO 3D reg

Control O register shadow

Col or compare min bounds
Col or conpare nmax bounds

Current val ue of COLOR_RERD_3D reg
Current value of COLOR_REGL 3D reg
State of the host access base reg 1
State of the Ofset base 1 reg

Equal s FETCH COLOR for col or
Const ant source al pha (9:16)
Constant destination al pha (9:16)

conpares

current rendering buffer structure
backup buffer (textures) structure
Z buffer structure

Current display list to build

pi xel depth flags
5464 Regi ster apperture
5464 Franme apperture
Laguna PCl interrupt
Laguna PCl sl ot

nunber

Amount of video RAMin bytes
Screen pitch in bytes

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

WORD wHori z; /1 Display width in pixels

WORD wMert; /1 Display height in pixels

WORD wBpp; /1l Pixel depth (8, 16,...)

BYTE f Singl eRead,; /1l Single read flag as opposed to burst

BYTE fSingleWite; /1 Single wite flag as opposed to burst

DWORD dwiat encyTi ner; /1 Latency tiner

BYTE f I ndexed; /1l True if indexed graphics node is used
} TSystem

/***

*

* LL_DeviceState structure defines possible cached state infornmation
* that m ght be exported to a client of a graphics library

*

**/

t ypedef struct

{
/* These three fields can be set before calling the LL_InitLib function */
DWORD dwHl ags; [* Init flags */
DWORD dwDi spl ayLi st Len; /* Size of the display lists (in bytes) */
DWORD dwSyst enText ur esLen; /* Size of the systemtextures (in bytes)*/

/* These variabl es can be used by the software */

DWORD * pRegs; /* Laguna regs, ptr to memnappped /O */
BYTE *pFrane; /* Frane, pointer to the a frame buffer */
DWORD dwWRAM /* Video nenory on the card (in bytes) */
WORD wHor i z; /* Current horizontal resolution */
WORD wMert; /* Current vertical resolution */
WORD wBpp; [* Current pixel depth */

} LL_DeviceState;

#endif // _L3STRUCT_H_

September 1996 3-88 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.6.3 I3types.h

/***

*

* Modul e: | 3types. h CGeneric Type Header Modul e

*

* Revi si on: 1.00

* Dat e: April 14, 1994

* Aut hor : Cirrus Logic Austin Design Center
khhkkkhhkkhhhkhkkhhhkkhhhhdhhkhhhhdhdddhhdhdxddhhdhdxddhhdhdxddhddhxddhx*dh*x*dkx***x*%x
* Modul e Descri ption:

* Thi s nmodul e contains generic type decl arations

hkhkhkkhkhkhhkhkhhhhhhkhhhhhhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhdhddhdddhrddrrdrx*k

* Changes:

*

* DATE REVI SI ON DESCRI PTI ON AUTHOR

K o o o o o e e e e e e e e e
* 04/ 14/ 95 1.00 Ori gi nal Randy Spurl ock
* 09/26/95 1.01 Add few new defines Goran Devic

* 02/ 15/ 96 1.02 Fit to L3d library format CGoran Devic

*

**/

#i f ndef _L3TYPES H_
#define L3TYPES H_

/***

* Type Definitions

**/

typedef int BOOL; /* Define a boolean as an integer */
t ypedef unsi gned char BYTE; /* Define a byte data type */
t ypedef unsigned short int WORD, /* Define a word data type */
t ypedef unsi gned | ong DWORD; /* Define a double word data type */

#endi f // _L3TYPES H_

Copyright 1996 — Cirrus Logic Inc. 3-89 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.6.4

modemon.h
/***
*
*
* Modul e: nodenon. h Mode/ Moni t or Functi ons Header Modul e
*
* Revi si on: 1.00
*
* Dat e: April 8, 1994
*
* Aut hor : Cirrus Logic Austin Design Center
*

hkhkhkkhkhkhhkhhhhhhhkhhhhhhhhdhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhddrhddrdrdrdrrdrrdxrx

*

*

* Modul e Descri ption:

*

* Thi s nmodul e contains the type declarations and function
* prototypes for the node/nonitor functions.

*

khkhkkhkhkhkhkhhkhkhhhkhhhkhhhkhkhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhhhkhdhkrkkhkrkk kk*x**x
*

*

* Changes:

*

* DATE REVI SI ON DESCRI PTI ON AUTHOR

hkhkhkkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhdhddhkrdhrrdrkkx*x*x

/

#i f ndef _MODEMON_H_
#defi ne _MODEMON H_

/***

*

. S
Type Definitions and Structures
khkhkhkhhhhhkhkhhkhhhhhhkhkhhhhdhdhhkhhkhhhdhdhdhdhhhkhhhdhddhhkhhkhhhdhdhdhkhkhhkhhhdhddkdkhhkhhhdhddkrkhkhkxxx*x%

/
t ypedef struct tagRange /* Range structure */

{

uni on tagM ni num /* M ni mum val ue for the range */

{

i nt nM n;

September 1996 3-90 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

| ong | M n;
fl oat fMn;
} M ni num
uni on tagMaxi num /* Maxi mum val ue for the range */
{
i nt nivax;
| ong | Max;
fl oat f Max;
} Maxi num
} Range;
typedef struct tagMonLi st Header /* Monitor |ist header structure */
{
i nt nhbni t or; /* Nunmber of nonitors in the |ist */

} MonlLi st Header ;

typedef struct taghMnListEntry /* NMonitor list entry structure */
{
char *pszNane; /* Pointer to nonitor nane string */
char *pszDesc; /* Pointer to nonitor description */

} MonListEntry;

typedef struct taghMnlLi st /* Monitor |list structure */
{
MonLi st Header MonHeader ; /* NMonitor |ist header */
MonLi stEntry MonEnt ry[1] ; /* Start of the monitor list entries */
} MonlLi st;
typedef struct tagMonl nfoHeader /* Monitor info. header structure */
{
i nt nMode; /* Nunber of nmonitor nodes in |ist */

} Monl nf oHeader ;

t ypedef struct taghnlnfoEntry /* Monitor info. entry structure */

{
char *pszNane; /* Pointer to nonitor node name */
Range rHori z; /* Horizontal range val ues */
Range rVert; /* Vertical range val ues */
i nt nsSync; [* Horiz./Vert. sync. polarities */
i nt nResX; /* Maxi mum suggested X resol ution */
i nt nResY; /* Maxi mum suggested Y resol ution */

} MonlnfoEntry;

Copyright 1996 — Cirrus Logic Inc. 3-91 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

t ypedef struct taghnlnfo /* Monitor information structure */

{
Monl nf oHeader MonHeader ; /* Monitor information header */
Monl nf oEntry MonEntry[1] ; /* Start of the nonitor entries */

} Monl nfo;

t ypedef struct tagMdel nfoEntry /* Mbde information entry structure */

{
char *pszNane; /* Pointer to node nanme string */
f 1 oat f Hsync; /* Horizontal sync. frequency value */
fl oat f Vsync; /* Vertical sync. frequency val ue */
i nt nResX; /* Horizontal (X) resolution val ue */
i nt nResY,; /* Vertical (Y) resolution value */
i nt nBPP; /* Pixel depth (Bits/Pixel) */
i nt nMenory; /* Menory size (Kbytes) */
i nt nPi t ch; /* Pitch val ue (Bytes) */
unsigned int nAttr; /* NMode attribute val ue */

} Model nf oEnt ry;

typedef struct tagMdeli st Header /* Mode list header structure */

{
i nt nMode; /* Nunber of nobdes in the |ist */

} Modeli st Header ;

t ypedef struct tagMdelistEntry /* Mode list entry structure */
{
Model nf oEnt ry ModeEntry; /* Mode information entry */
Monl nf oEntry *pMonEntry; /* Monitor node index val ue */

} Modeli stEntry;

t ypedef struct tagModeli st /* Mode list structure */
{

Modeli st Header ModeHeader ; /* Mbde |ist header */

ModelLi st Entry ModeEnt ry[1] ; /* Start of the node list entries */
} Modeli st;
t ypedef struct tagMdel nfo /* Mode information structure */
{

Model nf oEnt ry ModeEnt ry; /* Mode information entry */
} Model nf o;

September 1996 3-92 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/***
*

* Functi on Prototypes

R I R R I I I I I R I I

/

MonLi st *Get Moni t or Li st (void);

Monl nfo *Get Monitorl nfo(char *);

ModelLi st *Get ModeLi st (Monlnfo *, char *);
Model nfo *Get Model nfo(char *, char *);
BYTE * CGet ModeTabl e(char *, char *);

voi d Set Mbde(BYTE *, BYTE *);

#endi f // _MODEMON H_

Copyright 1996 — Cirrus Logic Inc. 3-93 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7

3.7.1

Programming Examples

CL-GD5464 Setup

The following source code set up the CL-GD5464 for operation, and shows an example of execut-
ing a simple display list and exiting. The code uses some external routines that are provided and
some library routines that are not provided.

/***

*

* Modul e: trmc

*

* Revi si on: 1.00
* Dat e: August 30, 1996

* Aut hor : Cirrus Logic Austin Design Center

*

hkhkhkkhkhkhhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhdhddhdddhrrdrrdrx*k

* Modul e Descri ption:

* Set up for Laguna 3D 5464 part

hkhkhkkhkhkhhkhkhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhhhhhhhhhhhhdhhhdhhhdhdhddhdddhrrdrrdrx*k

*

* Changes:

* DATE REVI SI ON DESCRI PTI ON AUTHOR

*

**/

#i nclude <stdlib. h> /1 1nclude standard library

#i ncl ude <stdio. h> /1 1nclude standard input/out put
#i ncl ude <coni o. h> /1 getch

#i ncl ude <i 86. h> /1 1nclude x86 specific library
#include "trmh" /1l self

#i nclude "Il 3struct.h" /1 laguna structures

#i nclude "I 3types. h" /1 laguna types

#i ncl ude "nmodenon. h" /1 Model nfo

/1 gl obal variables

September 1996 3-94 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

TSystem LL_St at e;

Model nf o *pModel nf o;

char *pMbdeTabl e;

/1 useful |ocal definitions
#def i ne ERROR 1

#defi ne DI SPLAY LI ST _SIZE 1048576
#defi ne TEXTURE_LENGTH 1048576
#define DL_START OFFSET 20
#defi ne EBI OS_CLGD5464 0x64
#def i ne EBI OS_CLGD5464B 0x61

3D PROGRAMMER'’S GUIDE

/1 main global Laguna device state
// Pointer to node infornation
/] Pointer to node table

/1 1 MB for testing purposes

/1 1 MB for host textures

/1 5 dwords offset for display |ist
/1 BI OS Laguna 3D signhature

/1 BICS Laguna 3D alternate signature

/***

*

* void LL_Init()

*

* Set

*

up Laguna 3D for operation

**/

int LL_Init()

{
i nt r c=0;
uni on REGS r;
char sBuf[128];
char sMode[128] ;
DWORD z_buf addr;
DWORD *pTex;

/1 set up

/1 return code

/1l 186 registers
/1 Tenp buffer for
/1l Tenmp buffer for

initialization info
node nane

/1 I NI TI ALI ZE DI SPLAY ADAPTER

/1

/1 The follow ng code section relies on library calls to do such things as

/1 reading initialization files,
These routi nes are not

/1 the graphics node.

obt ai ning PCl addresses and setting
provi ded as part of this

/1 exanple but are expected to be provided as an appendi x to this docunent.

/1 The routines are:

/1

/1l CGetPrivateProfileString()
/1 GetRegi sterApperture()

/1 GetLagunaApperture()

/1 Get Model nfo()

Copyright 1996 — Cirrus Logic Inc.

3-95

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

/1 CGet ModeTabl e()
/1 Set Mode()

/1 read and store chipset-specific and other settings from.ini files
/1
GetPrivateProfileString("SYSTEM', "PCl_MASTER READ', "SI NGLE',

sBuf, 128, "LAGUNA.INI");

if(!strcnp(sBuf, strupr("BURST")))
LL_State.fSingl eRead = O;

el se
LL State.fSingleRead = 1;

Get PrivateProfileString("SYSTEM', "PCH _NMASTER WRI TE", "SI NGLE",
sBuf, 128, "LAGUNA.IN");

if(!strcnp(sBuf, strupr("BURST")))
LL_State.fSingleWite = 0;
el se

LL_State.fSingleWite = 1;

GetPrivateProfileString("SYSTEM', "PCl _MASTER LATENCY_TI MER', "255",
sBuf, 128, "LAGUNA.INI");

sscanf(sBuf, "%", &LL_State.dwLatencyTi ner);

/1l First, use Extended BIOS to get the graphics card infornmation

/1
r.h.ah = 0x12;
r.h.bl = 0x80;

i nt 386(0x10, &r, &);

if((r.wax !
(r.w ax !

EBl OS_CLGD5464) &&
EBl OS_CLGD5464B))

return(ERROR);

/1 Get the anmpunt of the video nmenory present
/1

r.h.ah = 0x12;

r.h.bl = 0x85;

i nt386(0x10, &, &r);

September 1996 3-96 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

LL_State.dwWRAM = r. h.al * 64 * 1024,

/1l CGet the register and frane appertures

/1

LL _State.pRegs = (BYTE *) Get Regi sterApperture();
LL_State.pFrame = (BYTE *) GCetLagunaApperture(1);

/1 Get the node information and set the structure that defines

/1l the state of the graphics device (DC

/1

GetPrivateProfileString("MODE", "VIDEO', "MODE 640X480X16 1",
sMbde, 128, "TRMIN");

pModel nfo = Get Mbdel nfo("5462", sMode);
i f(pModelnfo == NULL)
{
printf("error getting nmode info\n");
return(ERROR);

/1l retrieve screen size and pixel depth paraneters
/1
LL_State.wHoriz
LL_St ate. wert
LL_State. wBpp

pModel nf o- >ModeEnt ry. nResX;
pModel nf o- >ModeEnt ry. nResY;
pModel nf o- >ModeEnt ry. nBPP;

/1 W dont need npbde structure any nore
/1
free(pMdelnfo);

/1 nowwe will actually set the video node, so get the node tables
/1
pModeTabl e = Get ModeTabl e("5462", sMode);
i f(pModelnfo == NULL)
{
printf("error getting node table\n");
return(ERROR);

// set the video npbde and free the structure
/1
Set Mode(pModeTabl e, LL_State.pRegs);

Copyright 1996 — Cirrus Logic Inc. 3-97 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

free(pMddeTable);

/1 clear all of RDRAM
/1
menset (LL_State. pFranme, 0, LL_State.dwWRAM);

/1 calculate the pitch of the given graphics node: read CRL3 (O fset Register)
/1
LL State.pitch = *(LL_State.pRegs + 0x4C) & Oxff;

/1 read CR1B, which contains Ofset Register][8]

/1

if(*(LL_State.pRegs + 0x6¢c) & 0x10)
LL_State.pitch += 256;

/1 read CRLD, which contains O fset Register[9]

/1

if(*(LL_State.pRegs + 0x74) & 1)
LL_State.pitch += 512;

/1l pitch is an oct-byte value, convert to bytes
/1
LL _State.pitch *= 8;

/1 I NI'TI ALl ZE REG STER FI LE

CLEAR_RANGE(X 3D, DU ORTHO ADD 3D); /1 clear 3D interpol ators
CLEAR_RANGE(A 3D, DA ORTHO 3D); /1 clear 3D interpolators
CLEAR_RANGE(COLOR_M N_BOUNDS_3D, COLOR_MAX_BCUNDS_3D);

SETREG W DTH1_3D, 0x10000); /[l init polyengine reg WDTHL _3Dto 1
SETREG CONTROL_MASK 3D, 0); /1 enable wites to all fields
SETREG CONTROL1_3D, 0); /1 initialize

/1l set BaseO address register:

/1 * Color buffer X offset of 0O

/1 * Color buffer |location in RDRAM
/1 * Z buffer location in RDRAM

/1 * Textures in RDRAM

/[l * Pattern offset of O

/1

SETREG(BASEO_ADDR 3D, 0);

September 1996 3-98 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/] set Basel address register:
/1 * Color buffer Y offset of 0O
/[l * Z buffer Y offset to O

/1

SETREG BASE1_ADDR 3D, 0);

/] set texture control register:

/1l * Texture U, V masks to 16

/1l * Texture U, V wraps

/1 * Texel node tenporarily to O

/1 * Texel |ookup to no | ookup

/1 * Texture data is lighting source
/1 * Filtering disabled

/1 * Texture polarity of type O

/1 * Texture maski ng di asabl ed

/1l * Texture mask function to Wite nask
/[l * Address mux to O

/1 * CLUT offset to O

/1

SETREGE TX_CTLO_3D, 0);

SETREG(TX_XYBASE_3D,
SETREG(TX_CTL1_3D,
SETREG(TX_CTL2_3D,
SETREG(COLORO_3D,
SETREG(COLORO_3D,
SETREG(X_CLIP_3D,
SETREG(Y_CLIP_3D,
SETREG(TEX_SRAM CTRL_3D,

; /1l Set texture base reg and cache
; /1 Set tex col or bounds

; /1 Set tex col or bounds

; /1 Set color O reg/cache

; /1l Set color 1 reg/cache

; /1 Reset clipping reg

; /'l Reset clipping reg

0)
0)
0)
0)
0)
0)
0)
0); /1 Set a 2D ctrl reg

/1 I NI TI ALI ZE HOST XY UNI T REG STERS

/1 set host xy control register:

/1 * HostXY is disabled

/1 * Pitch is set to 1024 (100001b)
/1

SETREQ HXY_HOST_CTRL_3D, 0x21 << 8);

/1 intialize host base 0 regs

SETREG(HXY_BASEO_ADDRESS PTR 3D, 0);
SETREG(HXY_BASEO_START XY_3D, 0):;

Copyright 1996 — Cirrus Logic Inc. 3-99 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

SETREG(HXY_BASEO_EXTENT_XY_ 3D, 0);

/1l initialize host base 1 regs
SETREG HXY_BASE1 ADDRESS PTR 3D,
SETREE HXY_BASE1_OFFSETO_3D,
SETREG HXY_BASE1_ OFFSET1_3D,
SETREGE HXY_BASE1_LENGTH 3D,

/1l initialize mailbox registers
SETREG MAI LBOXO 3D, 0);
SETREG MAILBOX1_3D, 0);
SETREG MAI LBOX2_3D, 0);
SETREG MAI LBOX3_3D, 0);

/] I NI TIALI ZE PREFETCH UNI T REE STERS ==================—==—=—==—=—==—=—===—=======

SETREGE PF_CTRL_3D, 0); /1l Disable Prefetch

SETREE PF_BASE_ADDR 3D, 0); /1 Set prefetch base reg
SETREGE PF_I NST_3D, | DLE) ; /1 Wite an IDLE instruction
SETREG PF_DEST _ADDR 3D, 0); /1 Set prefetch dest address
SETREGE PF_FB_SEG 3D, 0); /1l Set frame segment reg
SETREE PF_STATUS_3D, 0); /1 Reset Display_List_Swtch

/1 set read/wite bursting node: these values are read froma file in this

/1l exanple so as to be configurabl e based on the capabilities of a specific
chi pset

11

SETREE HOST_MASTER CTRL_3D, (LL_State.fSingleRead << 1) |
LL State.fSingleWite);

/1 3d instruction track disable, fetch on request, enable instruction fetch
SETREQ PF_CTRL_3D, 0x19);

/1 set up control0_3d register for 16 bpp nbde, 565, mnimal features
/1

/] start with all bits clear: that inplies

/1 * Z node nornmal, Z-collision detect disabled, 16-bit Z buffer

/1 * Lighting source is poly engine

/1 * Al pha bl endi ng di sabl ed

/1 * Color saturation disabled

/1 * Color conpares disabl ed

/1 * Pixel mask disabl ed

September 1996 3-100 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/1
LL_State.dwControl 0 = 0;

/1 now set pixel depth
/1
LL_State. Control 0. Pi xel _Mbdde = PI XEL_MODE_565;

/1 wite the register
/1
SETREG CONTROLO_3D, LL_State.dwControl 0);

/1 I NI TI ALI ZE BUFFER MANAGEMENT: A, B (textures) and Z ====================

rc = LL _InitBuffers();
if (rc)
goto exit;

/1 calculate z buffer y offset

z_buf _addr = LL_State. Buf Z. Extent.top;

z_buf _addr /= 32; /1 this is a 32-1ine offset fromcol or buffer
z_buf _addr <<= 21; /1l the address is stored in BASE1l ADDR[28: 21]

/1 Set rendering buffer x and y offsets, z buffer y offset
SETREG BASEO_ADDR 3D, 0);
SETREG BASE1_ADDR 3D, z_buf _addr);

/1 INITIALI ZE A SI NGLE DI SPLAY LI ST
/1

/1 This section relies on library routines to allocate and manage nenory.
/1 They are expected to be provided as an appendix to this docunent.

/1 The routines are:

/1

/1 Al'l ocSystemvenory()

/1 GetLinear Address()

/1 Get Physi cal Address()

/1l allocate 1 MB system nmenory for the display list

/1

if((LL_State.DL.hMem = All ocSystemvenory(DI SPLAY _LIST_SIZE)) == 0)
return(ERROR);

/1 retrieve the |inear and physical addresses of the display |ist

Copyright 1996 — Cirrus Logic Inc. 3-101 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

/1
LL_State. DL. pdwLi nPtr
LL_State.DL. dwPhyPt r

(DWORD *) GetLinear Address(LL_State.DL. hMem);
Cet Physi cal Address(LL_State.DL. hMem);

/1l set the length and the display list pointer to point to an offset

/1 of 20: 4 dwords are reserved for an interrupt junp table, and an

/! additional dword for a display list semaphore (this is inplenentation-
/1 dependent)

/1

LL_State.DL.dwLen DI SPLAY_LI ST_SI ZE;

LL_State.DL. pdwNext = LL_State.DL. pdwLi nPtr + 5; /1 + 20 bytes

/1l clear the junp table and a semaphore

/1

LL_State.DL. pdwNext[0] = |DLE;
LL _State.DL. pdwNext[1] = |DLE;
LL_State.DL. pdwNext[2] = |DLE;
LL_State.DL. pdwNext[3] = |DLE;
LL_State.DL. pdwNext[4] = O;

/1l tenmporary fix for non-flushing TLB
/1

*(DWORD *) ((DWORD) LL_St at e. DL. pdwLi nPtr + DI SPLAY LI ST _SIZE - 16) = BRANCH
+ 20;

/'l wite base address of display list to the register that stores this val ue
/1
SETREGQ PF_BASE_ADDR 3D, LL_State.DL.dwPhyPtr);

/1 make the screen white
/1
nmenset (LL_State.pFrame, 255, LL State.wHoriz * LL State.wert * 2);

/1 create a texture on-the-fly to fill buffer B
/1
for (pTex = (DWORD *)LL_St at e. Buf Text ur es. dwAddr ess;

pTex <= (DWORD *)LL_St at e. Buf Text ures. dwAddress + LL_State.wHoriz *
LL State.wert / 2;

pTex++)

*pTex = (DWORD) pTex;

September 1996 3-102 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

exit:
return(rc);

/***
*

* void LL_Terni nate()

*
* Shut down Laguna 3D after operation
*
*

**/

int LL_Term nate() /!l shutdown Laguna 3D
{

uni on REGS r;

LL_Wait();

/1l Get the video node info to reset

/1

pModeTabl e = Get ModeTabl e("5462", "MODE_RESET");

i f(pModelnfo == NULL)

return(ERROR);

/1 Set the video node "reset"

/1

Set Mode(pModeTabl e, LL_State.pRegs);

free(pMddeTable);

/!l Finally, set the BICS video node 3

/1

r.w ax = 0x0003;

i nt386(0x10, &r, &r);

return(0);
}

/***

*

Copyright 1996 — Cirrus Logic Inc. 3-103 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

* void LL_print_regs()

*

* Wait for 3D engine to idle by spinning on prefetch status register

*

**/

void LL_\ait ()

{
while ((*(DWRD *)(LL_State.pRegs + PF_STATUS 3D)) & 0x3e0)
{
printf("status: %98x\n", *(DWRD *)(LL_State.pRegs + PF_STATUS 3D));
b
}

/***
*

* void main()

*

**/

void main()

{
i nt rc=0;
BYTE *pRegs;
/1 setup
rc = LL_Init();
if (rc)
goto exit;
printf("setup: %\n", rc == 0 ? "K' : "ERROR");

/1 obtain | ocal pointer to Laguna register file
pRegs = LL_St at e. pRegs;

/1 dunp Laguna 5464 state information if desired
/1 LL_print_state();

/1 dunmp Laguna 5464 registers if desired
/1 LL_print_regs();

/] start a sinple display list:

September 1996 3-104 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/1 any of the display lists fromdlists.c can be inserted here
/1
dl _poly_set4(LL_State.DL. pdwNext);

/1 branch to the display |ist and execute
*(DWORD *) (LL_State.pRegs + PF_INST_3D) = BRANCH + DL_START_OFFSET;

/1 wait after the display list before we |aunch another
LL_Vait();
getch();

/1 peek at our texture buffer
LL_Set Di spl ayBuf fer (&LL_St at e. Buf Text ures) ;
getch();

/1 peek at the z buffer
LL_Set Di spl ayBuffer (&LL_St at e. Buf Z2) ;
getch();

/1 shutdown Laguna
rc = LL_Termi nate();

printf("shutdown: %\n", rc == 0 ? "K' : "ERROR");

exit:
printf("exit: %\n", rc);

Copyright 1996 — Cirrus Logic Inc. 3-105 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7.2

Z-Buffered Points

Each of the following code examples require the include and extern statements from the Z-Buff-
ered Points example.

/***

*

* Modul e: dlists.c
*
* Revi si on: 1.00

* Dat e: Sept 3, 1996

* Aut hor : Cirrus Logic Austin Design Center

LR I R I R I I I R I O R I I R I I S R I O I S I S R I S I

* Modul e Descri ption:

* Various display |ists as TRM exanpl es

LR I I R I I I R I I I I R I I I R I I I I S I O R I S S I

* Changes:

* DATE REVI SI ON DESCRI PTI ON AUTHOR

*

**/

#i ncl ude <stdio. h> /1 printf
#i nclude "I 3types. h" /1 laguna types
#i nclude "Il 3struct. h" /1 TSystem

extern TSystem LL_State;

/***
*

* dl _point_setO()

*

* draw three z-buffered points in the top left corner, red, green, blue

*

**/

September 1996 3-106 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

voi d dl _poi nt_set O(DWORD * pdwiNext)

{
*pdwNext ++ = 0x18000181;// WRITE_3D REG reg: 4018 Y_COUNT_3D
*pdwNext ++ = 0x00000000;// - set y count to 1 for points
*pdwiNext ++ = 0x00002006; // DRAW PO NT i m 0002Z-Buffer
*pdwNext ++ = 0x00100000; // X 3D X val ue: 16. 000
*pdwiNext ++ = 0x00100000; // Y_3D Y val ue: 16. 000
*pdwNext ++ = 0x00f f 0000; // R 3D R val ue: 255.000
*pdwiNext ++ = 0x00000000; // G 3D G val ue: 0. 000
*pdwNext ++ = 0x00000000; // B 3D B val ue: 0. 000
*pdwNext ++ = 0x27810000; // Z 3D Z val: 10113.000
*pdwNext ++ = 0x00002006; // DRAW PO NT im 0002Z-Buffer
*pdwiNext ++ = 0x00100000; // X 3D X val ue: 16. 000
*pdwNext ++ = 0x00200000; // Y_3D Y val ue: 32. 000
*pdwiNext ++ = 0x00000000; /1 R 3D R val ue: 0. 000
*pdwNext ++ = 0x00f f 0000; // G 3D G val ue: 255.000
*pdwiNext ++ = 0x00000000; // B 3D B val ue: 0. 000
*pdwNext ++ = 0x3f 540000; // Z 3D Z val: 16212.000
*pdwiNext ++ = 0x00002006; // DRAW PO NT i m 0002Z-Buffer
*pdwNext ++ = 0x00200000; // X 3D X val ue: 32. 000
*pdwiNext ++ = 0x00100000; // Y_3D Y val ue: 16. 000
*pdwNext ++ = 0x00000000; // R 3D R val ue: 0. 000
*pdwiNext ++ = 0x00000000; // G 3D G val ue: 0. 000
*pdwNext ++ = 0x00f f 0000; // B 3D B val ue: 255.000
*pdwiNext ++ = 0x7del0000; // Z 3D Z val: 32225.000
*pdwiNext ++ = 0x68000000;// |DLE

}

Copyright 1996 — Cirrus Logic Inc. 3-107 September 1996

3D PROGRAMMER'S GUIDE

3.7.3 Alpha-Blended Points

CL-GD546X Software Technical Reference Manual

/***

*

* dl _point_set1()

*

* draw three nostly red points at

* three nostly green points at the sane spot,

*

top of screen, alpha blend with
result is a dull yellow

**/

void dl _point_set 1(DNORD *pdwNext)

{

*pdwNext ++ = 0x18000181; /1
*pdwiNext ++ = 0x00000000; /1
*pdwiNext ++ = 0x00000005; /1
* pdwNext ++ = 0x00000000; /1
*pdwiNext ++ = 0x00000000; /1
*pdwNext ++ = 0x00f f 0000; /1
*pdwNext ++ = 0x00320000; /1
*pdwNext ++ = 0x00320000; /1
*pdwiNext ++ = 0x00000005; /1
* pdwNext ++ = 0x00010000; /1
*pdwiNext ++ = 0x00000000; /1
*pdwNext ++ = 0x00f f 0000; /1
*pdwiNext ++ = 0x00320000; /1
* pdwNext ++ = 0x00320000; /1
*pdwNext ++ = 0x00000005; /1
*pdwNext ++ = 0x00020000; /1
*pdwiNext ++ = 0x00000000; /1
*pdwNext ++ = 0x00f f 0000; /1
*pdwiNext ++ = 0x00320000; /1
*pdwNext ++ = 0x00320000; /1
*pdwNext ++ = 0x18001041; /1
*pdwiNext ++ = 0x04008002; /1

/1

/1
*pdwiNext ++ = 0x18000c42; /1
* pdwNext ++ = 0x00800000; /1
*pdwiNext ++ = 0x00800000; /1

September 1996

3-108

WRI TE_3D REG reg: 4018 Y_COUNT_3D
- set y count to 1 for points
DRAW POl NT i m 0000
X 3D X val ue: 0. 000
Y_3D Y val ue: 0. 000
R 3D R val ue: 255.000
G 3D G val ue: 50. 000
B 3D B val ue: 50. 000
DRAW POl NT i m 0000
X 3D X val ue: 1. 000
Y_3D Y val ue: 0. 000
R 3D R val ue: 255.000
G 3D G val ue: 50. 000
B 3D B val ue: 50. 000
DRAW POl NT i m 0000
X 3D X val ue: 2.000
Y_3D Y val ue: 0. 000
R 3D R val ue: 255.000
G 3D G val ue: 50. 000
B 3D B val ue: 50. 000
WRI TE_3D REG reg: 4104 CONTROLO_3D

- light source = COLOR_REGL_3D
- al pha bl endi ng enabl e
- preserve 16 bpp

WRI TE_3D REG reg: 40c4 DA MAIN 3D

- set da_main for constant al pha bl ending
- set da_ortho for constant al pha bl endi ng

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

*pdwiNext ++ = 0x00800005; /1 DRAW PO NT i m 0800Fet chCol or

*pdwNext ++ = 0x00000000; /1 X 3D X val ue: 0. 000
*pdwiNext ++ = 0x00000000; /1 Y_3D Y val ue: 0. 000
*pdwNext ++ = 0x00320000; /1 R 3D R val ue: 50. 000
*pdwiNext ++ = 0x00f f 0000; /1 G 3D G val ue: 255.000
*pdwNext ++ = 0x00320000; /1 B 3D B val ue: 50. 000
*pdwiNext ++ = 0x00800005; /1 DRAW PO NT i m 0800Fet chCol or

*pdwNext ++ = 0x00010000; /1 X 3D X val ue: 1. 000
*pdwiNext ++ = 0x00000000; /1 Y_3D Y val ue: 0. 000
*pdwiNext ++ = 0x00320000; /1 R 3D R val ue: 50. 000
*pdwiNext ++ = 0x00f f 0000; /1 G 3D G val ue: 255.000
*pdwiNext ++ = 0x00320000; /1 B 3D B val ue: 50. 000
*pdwiNext ++ = 0x00800005; /1 DRAW PO NT i m 0800Fet chCol or

*pdwNext ++ = 0x00020000; /1 X 3D X val ue: 2. 000
*pdwiNext ++ = 0x00000000; /1 Y_3D Y val ue: 0. 000
*pdwiNext ++ = 0x00320000; /1 R 3D R val ue: 50. 000
*pdwiNext ++ = 0x00f f 0000; /1 G 3D G val ue: 255.000
*pdwiNext ++ = 0x00320000; /1 B 3D B val ue: 50. 000

*pdwiNext ++ = 0x68000000;// | DLE

Copyright 1996 — Cirrus Logic Inc. 3-109 September 1996

3D PROGRAMMER'S GUIDE

3.7.4

Gouraud-Shaded Lines

CL-GD546X Software Technical Reference Manual

/***

*

*

*

*

*

dl _line_set0()

draw t hree gouraud shaded |ines

**/

void dl _|ine_set O(DAORD * pdwNext)

{

*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =
*pdwNext ++ =

September 1996

0x0800100b;
0x02628000;
0x00db8000;
0x00930000;
0x00060000;
0x00c70000;
oxf f f f 0000;
0x0000019c;
0x0000a0ed,;
0x00000dOc;
0x00006901;
oxfffffe22;
0x0800100b;
0x007c8000;
0x003c8000;
0x005f 0000;
0x00chb0000;
0x00630000;
0x0000cd91;
0x00000042;
0x00010000;
0x0001745a;
oxfffefQ7e;
oxfffffo7c;
0x0800100b;
0x01bc8000;
0x00b98000;
0x00590000;
0x00ac0000;
0x00740000;
0x000064f b;

/1 DRAW LI NE

/I X_3D
/I Y_3D
/I R.3D
/I G.3D
/I B_3D

/1 DX_MAIN_3D
/1 Y_COUNT_3D
/I WDTHL_3D
/1 DR_MAIN_ 3D
// DG _MAIN_3D
/1 DB_MAIN_ 3D
/1 DRAW LI NE

/I X_3D
/I Y_3D
/I R.3D
/I G.3D
/I B_3D

/1 DX_MAIN_3D
/1 Y_COUNT_3D
/I WDTHL_3D
/1 DR_MAIN_ 3D
// DG _MAIN_3D
/1 DB_MAIN_ 3D
/1 DRAW LI NE

/I X_3D
/I Y_3D
/I R.3D
/I G.3D
/I B_3D

/1 DX_MAIN_3D

3-110

im 0001CGouraud

X val ue: 610
Y val ue: 219.
R val ue: 147.
G val ue: 6.
B val ue: 199.
dx nain: -1
y countl: O vy
wi dth 1: 0.
dr main: 0.
dg main: 0.
db mai n: -1.
im 0001CGouraud
X val ue: 124,
Y val ue: 60.
R val ue: 95.
G val ue: 203
B val ue: 99.
dx nain: 0.
y countl: O vy
wi dth 1: 1.
dr main: 1.
dg main: -2.
db mai n: -1.
im 0001CGouraud
X val ue: 444,
Y val ue: 185.
R val ue: 89.
G val ue: 172.
B val ue: 116.
dx nain: 0.

Copyright 1996 —

500
500
000
000
000
000
count2: 412
629
051
410
993

500
500
000
000
000
803
count2: 66
000
454
939
939

500
500
000
000
000
394

Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

3.7.5

* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++

0x0000006d;
0x00010000;
0x00010705;
Oxffffbdda;
0x000133a3;
0x68000000;

/1
/1
/1
/1
/1
/1

Gouraud-Shaded, Dithered Polygon

Y_COUNT_3D
W DTHL_3D

DR_MAI N_3D
DG_MAI N_3D
DB_MAI N_3D

| DLE

3D PROGRAMMER'’S GUIDE

y countl: O vy

width 1:

dr
dg
db

mai n:
mai n:
mai n:

1

1
-1.

1

count2: 109
000
027
706
202

/***

*

*

*

*

*

dl _poly_set0()

draw a single pol ygon that

i s gouraud shaded and dithered

**/

void dl _poly_set O(DAORD * pdwNext)

{

* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++

0x1020100f ;
0x81f b8000;
0x01120000;
0x00ba0000;
0x00420000;
0x00710000;
Oxf f f f da40;
0x00280015;
0x0014f ffO;
Oxfff42773;
Oxf fff5c55;
0x00028211;
0x0001714b;
0x00001010;
Oxffffeedb;
0x00000f 82;
0x68000000;

Copyright 1996 — Cirrus Logic Inc.

/1 DRAW POLY

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

X_3D

Y_3D

R 3D

G 3D

B 3D

DX_MAI N_3D
Y_COUNT_3D
DW DTHL_3D
DW DTH2_3D
DR_MAI N_3D
DG_MAI N 3D
DB_MAI N_3D
DR_ORTHO 3D
DG_ORTHO 3D
DB_ORTHO 3D

| DLE

3-111

im 0201D t her

X val ue:
Y val ue:
R val ue:
G val ue:
B val ue:

dx

y count 1:
dwi dt hl
dwi dt h2:

dr
dg
db
dr
dg
db

mai n:

mai n:
mai n:
mai n:
orth:
orth:
orth:

Gour aud
507.
274.
186.
66.
113.
-1.

500
000
000
000
000
853

40 y count2: 21

21.
-12.
-1.
2.

1
0.
-1.
0.

999
308
361
508
443
063
931
061

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7.6 Polygons with Z-Buffering, Flat-Shading, and Other Modifiers
/***

*

* dl _poly_set1()

*

* draw 2 polygons with various features

*

**/

void dl _poly_set 1(DAORD * pdwNext)

{

/1 z-buffered, flat-shaded, dithered polygon, load initial width: flat top

*pdwiNext ++ = 0x1120200€; /1 DRAW POLY im 1202Initial With Di ther zZ-
Buf f er

*pdwiNext ++ = 0x000a8000; /1 X 3D X val ue: 10. 500

*pdwNext ++ = 0x000a0000; /1 Y_3D Y val ue: 10. 000

*pdwiNext ++ = 0x00640000; /1 R 3D R val ue: 100. 000

*pdwiNext ++ = 0x00320000; /1 G 3D G val ue: 50. 000

*pdwiNext ++ = 0x00c80000; /1 B 3D B val ue: 200. 000

*pdwiNext ++ = 0x00000005; /1 DX_MAI N_3D dx nmain: 0. 000

*pdwiNext ++ = 0x000000be; /1 Y_COUNT_3D y countl: O y count2: 190

*pdwNext ++ = 0x01230000; /1 W DTH1_3D width 1: 291.000

*pdwiNext ++ = 0x00000000; /1 W DTH2_3D width 2: 0. 000

*pdwNext ++ = Oxfffe7953; /1 DW DTH1_3D dwi dt hl: -2.947

*pdwiNext ++ = 0x00000000; /1 DW DTH2_3D dwi dt h2: 0. 000

*pdwNext ++ = 0x00640000; /1 Z_3D Z val: 100. 000

*pdwiNext ++ = 0x000f 38e0; /1 DZ_MAI N_3D Z main: 15. 222

*pdwNext ++ = 0x00031380; /1 DZ_ORTHO 3D Z orth: 3.076

*pdwiNext ++ = 0x180001c1; /1 WRITE_3D REG reg: 401c WDTH1_3D

*pdwNext ++ = 0x00010000; /1l - reset initial width back to 1

/1l z-buffered, gouraud shaded, dithered pol ygon

*pdwNext ++ = 0x10203012; /1 DRAW POLY im 0203Dit herzZ- Buf f erGour aud
*pdwiNext ++ = 0x80328000; /1 X 3D X val ue: 50. 500
*pdwNext ++ = 0x00140000; /1 Y_3D Y val ue: 20. 000
*pdwiNext ++ = 0x00000000; /1 R 3D R val ue: 0. 000
*pdwNext ++ = 0x00f f 0000; /1 G 3D G val ue: 255.000
*pdwiNext ++ = 0x00f f 0000; /1 B 3D B val ue: 255.000
*pdwNext ++ = 0x0001942b; /1 DX_MAI N_3D dx nmain: 1.579
*pdwiNext ++ = 0x000b00b3; /1 Y_COUNT_3D y countl: 11 y count2: 179

September 1996 3-112 Copyright 1996 — Cirrus Logic Inc.

* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++

CL-GD546X Software Technical Reference Manual

0x000193e1;
Oxf f e399a5;
0x00015787;
Oxf ffeaB78;
0x00000000;
0x00000c9e;
0x0000da21;
oxffffla26;
0x03e80000;
0x0024be40;
Oxffe94220;
0x68000000;

Copyright 1996 — Cirrus Logic Inc.

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

DW DTHL_3D
DW DTH2_3D
DR_MAI N_3D
DG_MAI N_3D
DB_MAI N_3D
DR_ORTHO 3D
DG_ORTHO 3D
DB_ORTHO 3D
Z 3D

DZ_MAI N_3D
DZ_ORTHO 3D

| DLE

3-113

dwi dt h1:
dwi dt h2:

dr
dg
db
dr
dg
db

3D PROGRAMMER'’S GUIDE

nmai n:
mai n:
nmai n:
orth:
orth:
orth:

Z val :
Z main:
Z orth:

. 155
- 30.
. 342
-2.
. 000
. 049
. 852
-1.
1000.
36.

- 23.

200

658

102
000
743
258

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7.7 Polygon Showing Z-Buffering, Stippling, and Constant Lighting
/***

*

* dl _poly_set?2()

*

* draw 1 polygon: uses constant |ighting

*

**/

void dl _poly_set2(DAORD * pdwNext)

{

/1 you have to load the pattern registers if you want to do stipple ..

*pdwiNext ++ = 0x18001408; /1 WRITE_3D REG reg: 4114 PATTERN RAM 0_3D

*pdwiNext ++ = 0x04150415; /1 load pattern ram

*pdwNext ++ = 0x62736273;

*pdwNext ++ = 0x15041504;

*pdwNext ++ = 0x73627362;

*pdwNext ++ = 0x04150415;

*pdwNext ++ = 0x62736273;

*pdwNext ++ = 0x15041504;

*pdwNext ++ = 0x73627362;

/1 render a stippled, lit, z-buffered poly that is flat-top (initial wdth
| oad)

*pdwhNext ++ = 0x18001041; /1 WRITE_3D REG reg: 4104 CONTROLO_3D

*pdwiNext ++ = 0x04000002; /1 - light source = COLOR REGL 3D

/1l - preserve 16 bpp

*pdwiNext ++ = 0x18001341; /1 WRITE_3D REG reg: 4134 CO.OR1_3D

*pdwiNext ++ = 0x0022f f 22; /1 - load lighting value: keep red, di mgreen,
bl ue

*pdwiNext ++ = 0x110c3014; /1 DRAWPCLY im 10c2 (iw, stipple, light, z,
gour aud)

*pdwiNext ++ = 0x00c88000; /1 X 3D X val ue: 200.500

*pdwiNext ++ = 0x00640000; /1 Y_3D Y value: 100. 000

*pdwiNext ++ = 0x00640000; /1 R 3D R val ue: 100. 000

*pdwiNext ++ = 0x00640000; /1 G 3D G val ue: 100. 000

*pdwiNext ++ = 0x00f 00000; /1 B 3D B val ue: 240.000

*pdwNext ++ = 0x00005558; /1 DX_MAI N_3D dx nmain: 0. 333

September 1996 3-114 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

*pdwNext ++ = 0x0000012c; /1 Y_COUNT_3D y countl: O y count2: 300
*pdwiNext ++ = 0x00c90000; /1 W DTH1_3D width 1: 201.000
*pdwNext ++ = 0x00000000; /1 W DTH2_3D wi dth 2: 0. 000
*pdwNext ++ = Oxffff5559; /1 DW DTH1_3D dwi dt hl: -1. 666
*pdwNext ++ = 0x00000000; /1 DW DTH2_3D dwi dt h2: 0. 000
*pdwNext ++ = 0x00015787; /1 DR_MAI N_3D dr nmain: 1.342
*pdwNext ++ = Oxfffea878; /1 DG _MAI N_3D dg nmain: -2.658
*pdwNext ++ = 0x00000000; /1 DB_MAI N_3D db nmain: 0. 000
*pdwiNext ++ = 0x00000c9e; /1 DR _ORTHO 3D dr orth: 0. 049
*pdwiNext ++ = 0x0000da21; /1 DG _ORTHO 3D dg orth: 0. 852
*pdwNext ++ = Oxffffla26; /1 DB_ORTHO 3D db orth: -1.102
*pdwiNext ++ = 0x23280000; /1 Z 3D Z val : 9000. 000
*pdwNext ++ = Oxfff 60550; /1 DZ_MAI N_3D Z nmain: -10.021
*pdwNext ++ = Oxffe22760; /1 DZ_ORTHO 3D Z orth: - 30. 154
*pdwNext ++ = 0x180001c1; /1 WRITE_3D REG reg: 40lc WDTHL_3D
*pdwiNext ++ = 0x00010000; /1 - reset initial width

*pdwiNext ++ = 0x68000000; /1 1DLE

Copyright 1996 — Cirrus Logic Inc. 3-115 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7.8 Polygons Showing Texture Mapping
/***

*

* dl _poly_set3()

*

* draw 2 polygons with various features

*

**/

void dl _poly_set 3(DAORD * pdwNext)

{
DWORD tex_y_addr;
/1 set y offset for texture buffer; x offset is set to O
tex_y addr = (LL_State.BufTextures.Extent.top / 16) << 20;
/1 textured, z-buffered polygon (dont-Ioad-color: no need w th textures)
/1
/1 NOTE: this exanple assunes a texture map has been previously | oaded
/1 into RDRAM into our texture buffer, and that the texture is in
/1 5:6:5 node with dinensions 128x128 (this was acconplished by creating
/1 a texture on-the-fly in LL_Init() for this exanple code)
*pdwiNext ++ = 0x18001202; /1 WRITE 3D REG reg: 4120 TX CTLO 3D
*pdwiNext ++ = 0x00000433; /1l - texture is 5:6:5, 128 x 128
*pdwNext ++ = tex_y_ addr; /1l - tx_xybase reg = texture xy address
*pdwiNext ++ = 0x1002a00f; /1 DRAW PCLY im 002aTexLin Z-Buffer
Dont LoadCol or
*pdwiNext ++ = 0x82268000; /1 X_3D X val ue: 550.500
*pdwiNext ++ = 0x00960000; /1 Y_3D Y val ue: 150. 000
*pdwNext ++ = Oxffff99a0; /1 DX_MAI N_3D dx nmain: -1.600
*pdwiNext ++ = 0x00650095; /1 Y_COUNT_3D y countl: 101 y count2: 149
*pdwiNext ++ = 0x0001eeeb; /1 DW DTH1_3D dwi dt hl: 2. 866
*pdwNext ++ = Oxfffdl9as8; /1 DW DTH2_3D dwi dt h2: -3. 200
*pdwNext ++ = 0x08340000; /1 Z_3D Z val: 2100. 000
*pdwiNext ++ = 0x000d97b0; /1 DzZ_MAI N 3D Z mai n: 13. 593
*pdwNext ++ = 0x00085f cO; /1 DZ_ORTHO 3D Z orth: 8.374
*pdwiNext ++ = 0x00000000; /1 V_3D V val ue: 0. 000
*pdwNext ++ = 0x007f 0000; /1 U 3D U value: 127.000
*pdwiNext ++ = 0x0000820¢; /1 DV_MAI N _3D DV mai n: 0.508

September 1996 3-116 Copyright 1996 — Cirrus Logic Inc.

* pdwNext ++
* pdwNext ++
* pdwNext ++

0x00000005;
Oxffffbcb4;
Oxffff8fe9;

/'l perspective textured,

t ext ures)

/1
/1 NOTE:

// into RDRAM t hat

* pdwiNext ++

Dont LoadCol or

* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++
* pdwNext ++

0x1003a015;

0x81f 48000;
0x00640000;
0x00004923;
0x0000015¢€;
0x0000923d,;
0x00000000;
0x07d00000;
0x00000000;
0x001dd8a0;
0x007f 0000;
0x007f 0000;
Ooxf f f f a324;
0x00000000;
Oxf fff484c;
Oxfffea699;
0x00000000;
0x00000000;
0x00000000;
0x000001d6;
0x00000086;
0x00000000;
0x68000000;

Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual

/1
/1
/1

DU_MAI N_3D
DV_ORTHO 3D
DU_ORTHO 3D

3D PROGRAMMER'’S GUIDE

DU mai n: 0
DV orth: -1
DU orth: -1

z-buf fered pol ygon (dont-1oad-col or

/1 DRAW POLY

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

X_3D

Y_3D

DX_MAI N_3D
Y_COUNT_3D
DW DTHL_3D
DW DTH2_3D
Z 3D

DZ_MAI N_3D
DZ_ORTHO 3D
V_3D

U 3D

DV_MAI N_3D
DU_MAI N_3D
DV_ORTHO 3D
DU_ORTHO 3D
D2V_MAI N_3D
D2U_MAI N_3D

D2V_ORTHO 3D
D2U_ORTHO 3D
DV_ORTHO ADD 3DDV oadd:
DU_ORTHO _ADD 3DDU oadd
| DLE

3-117

. 000
. 737
. 562

no need with

this exanple assunes a texture map has been previously | oaded
is in 5:6:5 nbde and di nensi ons 128x128

i m 003aTexLi nTexPr spZ- Buf f er

X val ue: 500
Y val ue: 100.
dx main: 0.
y countl: O vy
dwi dt hl: 1.
dwi dt h2: 0.
Z val: 2000
Z main: 0.
Z orth: 29.
V val ue: 127.
U val ue: 127.
DV mai n: -1
DU mai n: 0.
DV orth: -1
DU orth: -2.
D2V m : 0
D2U m : 0
D2V ort: 0.
D2U ort: 0.

0

0

500
000
286
count 2: 350
142
000
000
000
846
000
000
637
000
282
651

. 000
. 000

000
007

. 002
. 000

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7.9 Polygons Showing Filtered Texture Mapping

/***
*

* dl _poly_set4()

*

* draw 2 polygons one with linear texturing, one with filtered

* texture

*

**/

void dl _poly set4(DWORD *pdwNext)

{

DWORD tex_y addr;

/1 set y offset for texture buffer; x offset is set to 0

tex_y_addr (LL_State.Buf Textures. Extent.top / 16) << 20;

*pdwNext ++ = 0x18001202; /1 WRITE_ 3D REG reg: 4120 TX CTLO_3D

* pdwiNext ++ 0x00000433; /1l - texture is 5:6:5, 128 x 128

* pdwNext ++ tex_y_addr; /1 - tx_xybase reg = texture xy address

* pdwNext ++ 0x1002800c; /1 DRAW POLY i m 0028TexLi n Dont LoadCol or

* pdwiNext ++ 0x815e8000; /1 X 3D X val ue: 350.500

*pdwiNext ++ = 0x00320000; /1 Y_3D Y val ue: 50. 000

* pdwiNext ++ Oxffff666e; /1 DX _MAI N 3D dx main: -1.400

* pdwNext ++ 0x00c90031; /1 Y_COUNT_3D y count1l: 201 y count2: 49

*pdwNext ++ = 0x0004665f ; /1 DW DTH1_3D dwi dt hl: 4.799

*pdwNext ++ = Oxfffeeb73; /1 DW DTH2_3D dwi dt h2: -3.800

* pdwiNext ++ 0x00000000; /1 V_3D V val ue: 0. 000

*pdwNext ++ = 0x007f 0000; /1 U 3D U value: 127.000

* pdwiNext ++ 0x0000820¢; /1 DV_MAI N 3D DV nai n: 0. 508

*pdwNext ++ = 0x00000005; /1 DU _MAI N_3D DU mai n: 0. 000

* pdwNext ++ Oxffffe266; /1 DV_ORTHO 3D DV orth: -1.884

*pdwNext ++ = Oxffff6c39; /1 DU _ORTHO 3D DU orth: -1.423

*pdwiNext ++ = 0x18001201; /1 WRITE_ 3D REG reg: 4120 TX CTLO_3D

* pdwiNext ++ 0x00040433; /1l - texture filter enable

/1 - preserve 5:6:5
/1 - 128x128

* pdwiNext ++ 0x1002800c; /1 DRAW PCLY i m 0028TexLi n Dont LoadCol or

*pdwNext ++ = 0x82268000; /1 X 3D X val ue: 550.500
September 1996 3-118 Copyright 1996 — Cirrus Logic Inc.

* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++
* pdwiNext ++
* pdwNext ++

CL-GD546X Software Technical Reference Manual

0x00960000;
Oxffff666e;
0x00c90031;
0x0004665f ;
Oxfffeeb73;
0x00000000;
0x007f 0000;
0x0000820¢;
0x00000005;
Oxffffe266;
Oxffff6c39;
0x68000000;

Copyright 1996 — Cirrus Logic Inc.

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Y_3D
DX_MAI N_3D
Y_COUNT_3D
DW DTHL_3D
DW DTH2_3D
V_3D

U_3D

DV_MAI N_3D
DU_MAI N_3D
DV_ORTHO 3D
DU_ORTHO 3D

| DLE

3-119

3D PROGRAMMER'’S GUIDE

Y val ue:
dx nmain:
y count 1:
dwi dt h1:
dwi dt h2:
V val ue:
U val ue:
DV mai n:
DU mai n:
DV orth:
DU orth:

150.
-1.

201

4,
- 3.

0.
127.
. 508
. 000
-1.
-1.

000
400
y count2: 49
799
800
000
000

884
423

September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

3.7.10 Initial Width Instruction Modifier

3.7.10.1 Defining the Initial Span

There are two methods for initializing polygon drawing depending on the characteristics of the ini-
tial (top) span of the polygon. The CL-GD5464 has opcode modifiers for the following two cases:

Case-1 A polyon without an initial width (WIDTH1) parameter, nor an opposite width (WIDTH2)
parameter. An initial width bias (W1_BIAS) is provided from a 5-bit field in a CONTROL
register.

Case-2 A polyon with both WIDTH1 and WIDTH2 is supported (same as warp). The W1_BIAS
field is not used in this case.

3.7.11 Double/Multi Buffering

The CRTC_START_ADDR?2 register, when written by either the PCI interface (Coprocessor
mode) or the WRITE_DEVICE_REGS (Display List mode), arms for transfer into the Primary
Screen Start Address registers (located at bits 20:19, CR1D; 18:16, CR1B, 15:8, CRC; 7:0, CRD)
at the next frame interval (at VBLANK). This is then loaded into the screen display refresh address
counters at VSYNC time. On the next active frame the new display start address is used to refresh
the screen. This address is used to refresh the screen until the next write to the Secondary Screen
Start Address register.

This register is a read/write. For software double-buffering, three methods can be used. In one
case the driver uses a software-polling mechanism looks like the following.

1) Atthe end of display list, a Load_Long_HIF writes the Secondary Screen Start Address register to the
new display buffer refresh address.

2) The next instruction of the display list then starts the clear Z-buffer (for 3D operation) BitBLT operation.
When completed, the CL-GD5464 goes to the IDLE state (goes to Coprocessor mode) by reading an
IDLE instruction.

3) The software driver reads the primary display address or polls for VSYNC. When either case is seen,
the software driver issues a BRANCH to the top of the new display list. This process repeats back to
step 1.

A second method uses a hardware interrupt on VSYNC. This eliminates polling of the CPU and
thus gives a better frame rate. Triple buffering works the same except that there is no wait to begin
drawing is necessary. There is a cleared (or initialized) buffer, ready to begin 3D writes without
disruption of the current display buffer.

A third and faster method uses the a WAIT instruction with the wait event being a flag in the
Laguna 3D control register. This flag is read/write by the host software driver. The bottom of the
display list instruction sequence is as follows:

1) Atthe end of display list, a WRITE_DEVICE_REGS writes the Secondary Screen Start Address regis-
ter. The hardware sets an ARM signal on the write and clears the ARM at VBLANK.

2) The next instruction of the display list then starts the clear Z-buffer (3D operation).

3) The nextdisplay list instruction is a _WAIT on FLAGY when TBD in the Control register is a ‘0’ (flag is ‘0),
the display list execution waits for a one (flag is ‘1"). This is set by the software driver when the next dis-
play list buffer has been loaded into memory and is ready for display list execution.

4) When the wait instruction has a ‘1’ (flag is ‘1) in the TBD Control bit, the next display list instruction is
called. The hardware clears (flag is ‘0’) the TDB Control bit on the completion of the wait on flag instruc-

September 1996 3-120 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

tion. The next instruction is a _WAIT for NOT_ARM, if double-buffering or a BRANCH to the top of the
next display list sequence for triple-buffering. For the double-buffering operation, a BRANCH instruction
would follow the WAIT for NOT_ARM instruction. The NOT_ARM indicates that the new Secondary Start
Display Address register has been loaded into the Primary Start Display Address register and the hard-
ware is at a frame interval.

In the above process, the advantage is the elimination of waiting by the software driver to instan-
tiate the next branch to top of display list for drawing operation. This allows the CPU to continue
display list building without waiting for buffer switch or issue of a branch instruction as in case 1.

There is one caveat of the secondary address register write, there must be a window that disables
the write data to complete when the data is written during the same cycle where a VBLANK
occurs. This forms a guard band during the write and arm cycle. Also, if the Primary Start Address
register is read during this guard band, the read must be suspended till after the update (after
VBLANK) of the Primary Display Start Address register.

3.7.12 2D Display Lists
TBD

3.7.13 Z-Collision Detection

The Z-buffer can be used to detect the proximity of two rendered primitive objects considering all
three spatial dimensions. Figure 3-17 is a drawing of this method.

Copyright 1996 — Cirrus Logic Inc. 3-121 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

START

A

SET Z_MASK_REG

i

\

CLEAN Z_COLLIDE_BIT

g

i

RENDER THE PRIMITIVE

IS Z_COLLIDE_BIT SET?

NO

READ Z_COLLIDE_REG REGISTER

Figure 3-17. Z-Buffer Detect Method

In some application scenarios, it can be desirable to perform a more coarse comparison on the Z
values that constitute a collision. This assumes not all of the 16 bits of Z are significant for the pur-
poses of determining proximity. In addition, upper bits of Z can be allocated to identify objects (in
a limited object space) if these bits can be masked from the Z-comparison function. The
CL-GD5464 provides a means for defining the desired masking by separate masks for the upper
and lower bytes of Z. The CONTROL1_3D register at 4110h defines the masks for each of the
upper and lower halves of the Z value.

September 1996 3-122 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Table 3-77. Z-Value Masks

15 8 |7 0
Z-value affected Bits 15:8 Bits 7:0
Mask field from
CONTROL1_3D Z-Hit Object Mask bits 31:24 Z-Hit Precision Maskbits 7:0
register

During the interpolation, Z values from the buffer and interpolator are filtered through the two
masks. Then they are compared and if the values are the same, a collision is indicated. The user
can then check the collision Z value, and determine from the upper bits which object caused the
collision.

Both halves of the Z value are masked before the compare so that the user can:

1) Mask lower ‘n’ (0 to 8) bits to ‘0’, to allow decrease in Z resolution to assure that deep objects do not
pass through each other, but are caught on a larger scale.

2) Mask upper ‘n’ (0 to 8) bits to ‘0’, to allow for assigning IDs to objects. For example, there can be four
different objects at the same Z distance, each with different top two bits in Z (00, 01, 10, 11). They are
considered as in the same Z since those bits are masked out, but in the case of collision, buffered Z is
copied to ZCOLLIDE register so user can examine it and see the object number that (top two bhits)
caused the collision.

3.7.14 2D BitBLT Examples
3.7.14.1 Host-to-Screen BitBLTs

For host-to-screen BitBLTs, the source XY location must yield a linear-physical address that is
aligned on a 32-bit (dword) boundary. The destination pitch must be a multiple of 8 bytes; however,
the destination BitBLT width can be on a pixel boundary.

3.7.14.2 Screen-to-Host BitBLTs

For screen-to-host BitBLTs, the source XY location must yield a linear-physical address that is
aligned on a 32-bit (dword) boundary. The source pitch and source BitBLT width must both be a
multiple of 8 bytes.

3.7.14.3 Host-to-Host BitBLTs
The host-to-host BitBLTs can be performed. It is undetermined as yet if they will be supported.

Following is a load ‘hif’ sequence for a 2D BitBLT.
// color fill BLT

/1 OP_OPBGCOLOR 22222222h #l oad fill color
/1 BLTDEF 1070h #opl col or source
/1 DRAVDEF 00CCh #rop - srccpy

/1 OPO_opRDRAM pt . X Oh #result at O

/1 OPO_opRDRAM pt .Y Oh #result at O

/1 BLTEXT_EX pt. X 20h #extent x is 32
/1 BLTEXT _EX. pt.Y 20h #extent y is 32

/1 Load hif hif instruction
/1 | load hif | device | byte enables | stall | addresss | # parans

Copyright 1996 — Cirrus Logic Inc. 3-123 September 1996

3D PROGRAMMER'S GUIDE

3.7.15

/1 OP_OPBGCOLOR

menory_wite_| ong_word(32'

0, 13' hO5E4, 6' h01});

menory_wite_ | ong_word(32

/] BLTDEF

menory_wite_| ong_word(32'

1, 13' h0586, 6' h01});

menory_wite_ | ong_word(32

/| DRAWDEF

menory_wite_| ong_word(32'

0, 13' h0584, 6' h01});

menory_wite_ | ong_word(32

/1 OPO_opRDRAM pt. X and Y

menory_wite_| ong_word(32'

0, 13' h0520, 6' h01});

menory_wite_ | ong_word(32

/1 BLTEXT_EX.pt.X and Y

menory_wite_| ong_word(32'

0, 13' h0700, 6' h01});

menory_wite_ | ong_word(32

/1 Idle

menory _wite | ong _word(32'

Process Synchronization

September 1996

CL-GD546X Software Technical Reference Manual

22222222h #load fill color
h08000000, { " WRI TE_DEVI CE_REGS_OPCODE, " ENG2D, 4' b000
h08000004, 32' h22222222) ;

1070h #opl col or source
h08000008, { * WRI TE_DEVI CE_REGS_OPCODE, " ENG2D, 4' b001
h0800000C, 32' h10700000) ;

00CCh #rop - srccpy
h08000010, { * WRI TE_DEVI CE_REGS_OPCCDE, ' ENG2D, 4' b110
h08000014, 32' h0O0O0000CC) ;

Oh #result at 0,0
h08000018, { " WRI TE_DEVI CE_REGS_OPCODE, " ENG2D, 4' b000
h0800001C, 32' h00000000) ;

20h #extent x is 32
h08000020, { " WRI TE_DEVI CE_REGS_OPCODE, " ENG2D, 4' b000

h08000024, 32' h00200020) ;

h08000028, { * | DLE_OPCODE, 27' h000000}) ;

READ_DEV_REGS allows synchronization between 3D operations and 2D operations by the abil-
ity to write a system memory semaphore within a display list.

3-124 Copyright 1996 — Cirrus Logic Inc.

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.7.16 CL-GD5464 3D Events

The following are the 3D events currently being considered. These generate some type of notifi-
cation, either interrupt, internal or external pin, or register bit state change.

CRT_VBLANK — CRT controller vertical blank

CRT_BANK — CRT controller bank switch used for double buffer

CRT_HBLANK — CRT controller horizontal blank

CRT_BEAM_EQ — CRT controller vertical count equal

2D_ENG_IDLE — 2D engine idle strobe to synchronize 3D and 2D requests, that is, BitBLTs.
AUTO BLT A — 2D engine auto-BitBLT signal A

AUTO _BLT B — 2D engine auto-BitBLT signal B

AUTO BLT C — 2D engine auto-BitBLT signal C

Z_COMPARE — trigger event on Z compare

C_COMPARE — trigger event on color compare

3.7.17 Self Interrupts
TBD

Copyright 1996 — Cirrus Logic Inc. 3-125 September 1996

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-126 Copyright 1996 — Cirrus Logic Inc.

	Table of Contents
	1. Overview
	2. 2D Programmer's Guide
	3. 3D PROGRAMMER’S GUIDE
	3.1 Architectural Overview
	3.1.1 System Block Diagrams
	3.1.2 Internal Architecture
	3.1.2.1 Host Interface
	3.1.2.2 2D/3D Engine

	3.2 3D Programming Model
	3.2.1 Direct Programming
	3.2.2 Coprocessor Indirect Programming
	3.2.3 Display List Programming
	3.2.4 Host Memory-Based Formats

	3.3 3D Rendering Overview
	3.3.1 Incremental Line-Drawing Algorithm
	3.3.2 Flat (Unshaded) Polygon
	3.3.3 Summary of Values Used for Flat Triangle
	3.3.4 Scaled Numbers
	3.3.5 Gouraud Shading
	3.3.6 X-Y Clipping
	3.3.7 Z-Buffering
	3.3.8 Color Transparency
	3.3.9 Lighting
	3.3.10 Saturation
	3.3.11 Alpha Blending
	3.3.12 Additional Notes on Lighting
	3.3.13 Data Path Equation
	3.3.14 Texture and Perspective Texture Mapping
	3.3.15 Quadrangles
	3.3.16 Lines and Points

	3.4 3D Memory Organization
	3.4.1 System Memory Space View of Frame Buffer Mem...
	3.4.2 System Processor (Across PCI Bus) View of th...
	3.4.2.1 Memory-Mapped I/O
	3.4.2.2 I/O-Mapped Registers

	3.4.3 System Memory Objects View from the CL�GD546...
	3.4.3.1 3D General System Memory Objects
	3.4.3.2 Virtual Memory Translation
	3.4.3.3 Physical Memory Addressing
	3.4.3.4 3D Display List Memory
	3.4.3.5 Z-Buffer and Color Map Buffers Mixed in Sy...
	3.4.3.6 Texture Memory Format in System Memory

	3.4.4 READ_3D_REGISTER — Multiple Commands View of...

	3.5 CL-GD5464 3D Instruction Set
	3.5.1 Instruction Summary
	3.5.1.1 Drawing Instructions
	3.5.1.2 Transfer Instructions
	3.5.1.3 Control Instructions
	3.5.1.4 Read/Write Register Instructions

	3.5.2 Instruction Field Tables
	3.5.2.1 STALL
	3.5.2.2 Drawing Instruction INSTR_MODIFIER Field
	3.5.2.3 TEST/WAIT Instruction EVENT_MASK
	3.5.2.4 READ/WRITE_DEV_REGS Instruction MODULE_SEL...
	3.5.2.5 DRAW Instructions Register Skip Controls

	3.5.3 Instruction Listings
	3.5.3.1 BRANCH
	Functional Description

	3.5.3.2 CALL
	Functional Description

	3.5.3.3 C_BRANCH
	Functional Description

	3.5.3.4 CLEAR
	Functional Description

	3.5.3.5 DRAW_LINE
	Functional Description

	3.5.3.6 DRAW_POINT
	Functional Description

	3.5.3.7 DRAW_POLYGON
	Functional Description

	3.5.3.8 IDLE
	Functional Description

	3.5.3.9 IDLE_INT
	Functional Description

	3.5.3.10 Interrupt Enable Control
	Functional Description

	3.5.3.11 NC_BRANCH
	Functional Description

	3.5.3.12 NOP
	Functional Description

	3.5.3.13 READ_DEV_REGS
	Functional Description

	3.5.3.14 RETURN
	Functional Description

	3.5.3.15 RETURN_INT
	Functional Description

	3.5.3.16 TEST
	Functional Description

	3.5.3.17 WAIT
	Functional Description

	3.5.3.18 WRITE_DEST_ADDR
	Functional Description

	3.5.3.19 WRITE_DEV_REGS
	Functional Description

	3.5.3.20 WRITE_PFCTRL_REG
	Functional Description

	3.5.3.21 WRITE_REGISTER
	Functional Description

	3.6 3D Register Header Files
	3.6.1 trm.h
	3.6.2 l3struct.h
	3.6.3 l3types.h
	3.6.4 modemon.h

	3.7 Programming Examples
	3.7.1 CL�GD5464 Setup
	3.7.2 Z-Buffered Points
	3.7.3 Alpha-Blended Points
	3.7.4 Gouraud-Shaded Lines
	3.7.5 Gouraud-Shaded, Dithered Polygon
	3.7.6 Polygons with Z-Buffering, Flat-Shading, and...
	3.7.7 Polygon Showing Z-Buffering, Stippling, and ...
	3.7.8 Polygons Showing Texture Mapping
	3.7.9 Polygons Showing Filtered Texture Mapping
	3.7.10 Initial Width Instruction Modifier
	3.7.10.1 Defining the Initial Span

	3.7.11 Double/Multi Buffering
	3.7.12 2D Display Lists
	3.7.13 Z-Collision Detection
	3.7.14 2D BitBLT Examples
	3.7.14.1 Host-to-Screen BitBLTs
	3.7.14.2 Screen-to-Host BitBLTs
	3.7.14.3 Host-to-Host BitBLTs

	3.7.15 Process Synchronization
	3.7.16 CL�GD5464 3D Events
	3.7.17 Self Interrupts

	4. Video Programming
	5. System Operation
	6. BIOS Specification
	Index
	Sales Offices/Company Information
	Reader Response Card

