

3

3D Programmer’s Guide

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-2 Copyright 1996 – Cirrus Logic Inc.

3. 3D PROGRAMMER’S GUIDE

This chapter presents the information necessary to program 3D functions on the CL-GD5464 (the
CL-GD5462 does not incorporate a 3D engine). The 3D rendering engine can draw polygons with
Gouraud shading, alpha blending, Z-buffering, and texture mapping. Autonomous execution from
a display list and a rich instruction set combine to minimize the load on the host while rendering
3D scenes.

The registers used by the 3D engine are covered in the

Laguna VisualMedia

 Accelerators Fam-
ily — CL-GD546X Volume I (Hardware Reference Manual, Second Edition, September 1996)

.
These registers are all accessible in memory-mapped I/O space, with or without byte swapping.
When the engine is running in Display List mode, these registers are loaded from the display list
by the engine.

3.1 Architectural Overview

This section provides a brief overview of the CL-GD5464 graphics system from a programmer’s
point of view. It begins with an overall system block diagram that covers the entire graphics sys-
tem. This is followed with a block diagram showing a conceptual view of the CL-GD5464.

3.1.1 System Block Diagrams

Figure 3-1 shows a graphics subsystem based on the CL-GD5464. The blocks shown as solid
lines are in the CL-GD5464 device. The blocks shown as dotted lines are outside the CL-GD5464
device.

The graphics subsystem provides a visible rectangular display mapped onto a rectangular mem-
ory space. This memory space is the frame buffer. The frame buffer is implemented using
RDRAMs.

On the input side of the frame buffer is a standard SVGA controller, a 2D/3D engine, a direct
frame-buffer interface unit, and a V-Port

 video bus interface. On the output side of the frame
buffer is the RAMDAC, which in turn drives the monitor.

The CRTC controller generates the display timing, providing horizontal and vertical synchroniza-
tion terms for the monitor and display refresh requests to the frame buffer. The CRTC controller
also provides a blanking term to the RAMDAC.

The RAMDAC maps memory contents to RGB color values. The frame buffer contains a descrip-
tion of each pixel on the screen. It can also contain an off-screen color buffer, Z buffer, and texture
maps. The format of the pixel and texel descriptions in the frame buffer can be palletized, RGB, or
YUV. The frame buffer can contain pixels in more than one format.

The various blocks within the CL-GD5464 can be programmed by the CPU via the PCI bus inter-
face. Alternately, the CL-GD5464 can become a PCI bus master under the control of the prefetch
unit to fetch instructions and parameters from host system memory. The HostXY unit can also ini-
tiate bus master operation to fetch texture maps or render a color buffer and Z buffer to host mem-
ory.

Also available on the PCI bus are a set of standard VESA VBE v2.0 BIOS software routines for
implementing the VESA SVGA standard, and for initializing and testing the system.

Finally, the CL-GD5464 has a set of PCI Configuration registers.

Copyright 1996 – Cirrus Logic Inc. 3-3 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

Figure 3-1. Graphics System Based on the CL-GD5464

SVGA VESA BIOS

PCI CONFIGURATION REGISTERS

SERIAL (I2C) BUS INTERFACE DDC2B

V-Port INTERFACE V-Port

2D/3D

SVGA

PALETTE
RAMDAC

RDRAM
FRAME
BUFFER

CRTC SYNCS

RGB

P
C

I B
U

S

GPI/O INTERFACE

G
E

N
E

R
A

L
-P

U
R

P
O

S
E

 I/
O

 P
O

R
T

C
H

IP
S

E
T

C
P

U
H

O
S

T
 S

Y
S

T
E

M
 M

E
M

O
R

Y

PREFETCH/

DIRECT FB INTERFACE

ENGINE

HOSTXY

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-4 Copyright 1996 – Cirrus Logic Inc.

3.1.2 Internal Architecture

Figure 3-2 is a conceptual diagram of the internal architecture of the CL-GD5464. It is imple-
mented around two internal buses. The host bus is shown as HIFBUS and the memory bus is
shown as RIFBUS. The HIFBUS is connected to the external PCI bus through the host interface
module. The RIFBUS is connected to the Rambus channel through a RIF (Rambus interface) and
RAC (Rambus access channel). The host interface module synchronizes the external bus clock to
the internal memory clock. Both the HIFBUS and RIFBUS are synchronous to the internal mem-
ory clock (nominally 62.5 MHz).

The functional modules of the CL-GD5464 are connected to one or both of these buses. The host
interface and 2D/3D modules are described in the following sections. Descriptions of the remain-
ing modules can be found in the Chapter 2, “2D Programmer’s Guide”.

Figure 3-2. CL-GD5464 Internal Architecture

HOST

D
IS

P
L

A
Y

F
IF

O

V
G

A

E
X

T
E

N
D

E
D

R

D
W

R

2D
/3

D
 E

N
G

IN
E

V-
P

O
R

T

V-PORT™

RGB

DISPLAY
DATA

START
ADDRESS

HIFBUS

RIFBUS

ADDRESS
TRANSLATE

WINDOWS

REGISTERS

RIF/RAC

P
IP

E
L

IN
E

INTERFACE

G
P

I/O

IN
T

E
R

F
A

C
E

L
O

C
A

L
 P

E
R

IP
H

E
R

A
L

PCI BUS

RAMBUS CHANNEL

Copyright 1996 – Cirrus Logic Inc. 3-5 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

3.1.2.1 Host Interface

The host interface provides a PCI v2.1 compliant target and bus master interface, functional units
to permit the CL-GD5464 to behave as a graphics processor with its own instruction set, and an
interface to the internal HIF bus.

Figure 3-3 presents the functional units of the host interface. The command queue, read queue,
bi-endian swap logic (for writes and reads), address decoder, and PCI control (target) units pro-
vide PCI-compliant target transfers of data to or from the CL-GD5464. The prefetch unit and the
PCI control (master) unit use PCI bus master cycles to fetch display list instructions and parame-
ters from host system memory. Similarly, the HostXY and PCI control (master) units allow reads
of textures maps stored in host memory and rendering (reads and writes) of a color buffer and Z
buffer to host memory.

The 8

×

43 command queue allows the CL-GD5464, when acting as a PCI target, to release the
host as soon as the transaction parameters have been recorded. This enables the host and media
accelerator to operate with a high degree of parallelism.

The host address bus (specifically the address phase of the multiplexed AD bus) enters the
address decoder where the CL-GD5464 determines if it is the target of the transaction about to
occur. If it is the target of the transaction, the appropriate acknowledge lines are activated by the
bus control block and the address is placed in the command queue along with a tag value that
indicates the transaction type.

Entries are removed from the command queue and passed on to the appropriate internal block for
execution. If the command queue is full, the bus control unit inserts wait cycles until one or more
free entries are available.

Read transactions must be executed by the CL-GD546X before the host can be released (since
the data must be made available to the host). Generally, this requires a number of wait states. For
BIOS reads, up to 4 bytes are assembled into the read queue before the data is placed on the
data bus and the host is released.

The prefetch unit is responsible for the fetch and pre-decode of display list instructions from host
memory. Rendering instructions are forwarded to the 2D/3D engine by the command queue. Con-
trol instructions are executed immediately by the prefetch unit. Internal interrupt or wait events
such as a display buffer switch or a vsync are handled by this unit to achieve maximum animation
performance.

The HostXY unit translates texture or pixel transactions from the 2D/3D Engine into PCI bus mas-
ter transactions to the host memory and checks that the addresses are in a valid range. Pixel or
Z data writes are queued in the read queue for optimal performance.

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-6 Copyright 1996 – Cirrus Logic Inc.

Both the prefetch and HostXY units contain virtual-to-physical address translation logic that reads
a translation table from host memory.

Bi-endian swaps (dword or word) can occur (as needed) on data passing in either direction
through the host interface.

The general-purpose I/O port is closely integrated with the host interface. If the CL-GD5464 is
configured for general-purpose I/O port, accesses to a specific range of memory-mapped I/O off-
sets are converted into accesses to the local peripheral.

Figure 3-3. Host Interface Block Diagram

COMMAND
QUEUE

8 × 43

ADDRESS
DECODER

A
D

 R
E

G
IS

T
E

RBI-ENDIAN
SWAP

SELECTS

PCI BUS

READ
QUEUE

INTERNAL
BUS

BI-ENDIAN
SWAP

GPI/O
GENERAL-PURPOSE I/O PORT

EPROM DATA

ADDRESS
BUS

BUS
CONTROLS

8 × 36

CONTROL
(SLAVE)

PCI BUS
CONTROL
(MASTER)

HOSTXY
UNIT

PREFETCH
UNIT

PCI
BUS

DATA
BUS

Copyright 1996 – Cirrus Logic Inc. 3-7 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

3.1.2.2 2D/3D Engine

Figure 3-4. 2D/3D Graphics Engine Model and Data Flow

HIFBUS

RIFBUS

MEMORY CONTROL UNIT

RESULT

HIF INTERFACE

WRITE

FIFO

FRAME BUFFER

RIF/RAC

2D PIXEL PATH

SRAM0

SRAM1

SRAM2

3D INSTRUCTION
DECODE AND EXECUTE

TEXTURE

AND TEXEL CACHE

X
, Y

, Z
, R

, G
, B

IN
T

E
R

P
O

L
A

T
O

R
S

X
Y

 C
L

IP
, M

A
S

K
A

N
D

 Z
 C

O
M

P
A

R
E

L
IG

H
T

IN
G

A
L

P
H

A
 B

L
E

N
D

IN
G

3D
 P

A
R

A
M

E
T

E
R

 A
N

D
C

O
N

T
R

O
L

 R
E

G
IS

T
E

R
S

3D
 P

IX
E

L
 P

A
T

H

INTERPOLATORS

CONTROL

FIFO

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-8 Copyright 1996 – Cirrus Logic Inc.

3.2 3D Programming Model

There are three mechanisms for programming the 3D engine. These methods are described in the
section summarized in Table 3-1.

The actual instructions and instruction formats are similar regardless of the mode being used. Bits
5:0 of drawing instructions are set to ‘0’ for Direct programming (since the registers have already
been loaded). Also, the Branch and Idle instructions are used only to enter and exit Display List
mode.

3.2.1 Direct Programming

In Direct Programming mode, registers are loaded, typically by writing directly to them in the reg-
ister address space beginning at 0x4000. The 3D engine must be idle while the registers are being
loaded. When the appropriate registers have been loaded, the engine is started by writing a draw-
ing instruction to the OPCODE_3D register at 0x40FC. The engine executes a single instruction
and then stops. This method is also known as the Coprocessor Direct method.

Direct programming is often used to see the effect of a single instruction without the possibility of
the interference of additional instructions. This would allow one to ‘single-step’ through a display
list.

Direct programming is the slowest method of initializing the device state and issuing drawing com-
mands. It should be used for initialization and situations where time is not a constraint. No PCI
burst transfers occur when direct programming is being used.

Flow control instructions, data movement instructions, and the like are generally not available in
the Direct Programming mode.

3.2.2 Coprocessor Indirect Programming

In the Coprocessor Indirect Programming mode, instructions and data can be transferred across
the PCI bus by writing to offsets 0x4800 through 0x4BFC. To execute a 3D Draw instruction in
Coprocessor Indirect mode, execute a Write_Register instruction to Host_3D_Data_Port at MMIO
offset 0x4800. The data transferred during the next group of A 32-bit writes are written beginning
at register address M, where A and M are values in the Write_Register instruction.

This mode is intended as a test mode and is not recommended for normal operation.

Table 3-1. 3D Programming Modes

Programming Mode Section

Direct Programming Section 3.2.1

Coprocessor Indirect Programming Section 3.2.2

Display List Programming Section 3.2.3

Copyright 1996 – Cirrus Logic Inc. 3-9 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

3.2.3 Display List Programming

This is the preferred mode for programming the CL-GD5464. Display list allows the most concur-
rence between the host and graphics processor. Display list also allows PCI bursting and bus mas-
tering. The CL-GD5464 is optimized for operation in this mode.

In Display List Programming (or Instruction Fetch) mode, the CL-GD5464 fetches instructions and
register values from system memory. The instruction list can include load instructions that set up
control registers for drawing as well as the drawing instructions themselves. A complete drawing
instruction takes the form of the draw opcode followed by a sequence of parameters that define
the region to be drawn, its color and texture, and other characteristics.

When all the register values required for an instruction have been fetched and loaded, the instruc-
tion itself is executed (some instructions do not require any register values). The CL-GD5464 is
put into instruction fetch mode by the execution of a BRANCH instruction (the instruction is written
to the PF_INST_3D register at 0x4480). Usually the CL-GD5464 exits Display List mode by the
execution of an IDLE instruction. The PF_CTL_3D register at 0x4404 has bits that control pausing
and instruction fetching. The PF_STATUS_3D register at 0x4424 returns the status of the 3D
engine.

The host must build the display list (instruction/register values) in system memory prior to starting
the 3D engine. Once started, the engine proceeds autonomously until it encounters an IDLE
instruction. The INT instruction can be used to report intermediate progress. The INT instruction
causes a pause in display list execution, requiring the application to restart execution. This is done
by writing a RET instruction to the PF_INST_3D register.

3.2.4 Host Memory-Based Formats

TBD

3.3 3D Rendering Overview

The following sections discuss 3D rendering as it is done on the CL-GD5464. First, the DDA (dig-
ital differential analyzer) is reviewed. Rendering of a flat polygon is covered to introduce the
method used by the CL-GD5464. Then, shaded coloring (Gouraud shading) of the polygon is
explained. Methods of clipping and masking are covered. Finally, lighting, alpha blending, and tex-
ture mapping are covered.

Figure 3-5 is a simplified block diagram of the 3D engine. The polygon interpolator determines the
pixels that fall within the polygon and includes the color (RGB) interpolators. This runs in parallel
with the texture interpolator and its cache. X-Y clipping, the depth comparison logic (hidden sur-
face removal), and destination masking all are used to determine whether pixels are actually writ-

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-10 Copyright 1996 – Cirrus Logic Inc.

ten. The pixels that are actually written go through the lighting and saturate stages, through the
alpha blending stage to determine their final color, and are then written.

Figure 3-5. Simplified Block Diagram of 3D Engine

3.3.1 Incremental Line-Drawing Algorithm

The straight line is the basis of all objects drawn by the 3D engine. To understand how lines are
drawn (or more properly, how pixels along a line are selected), one must first understand the incre-
mental line-drawing algorithm or DDA (digital differential analyzer). All modern line-drawing
engines use incremental line-drawing algorithms since they are well understood and well suited
to evaluation with adders. Bresenham’s Algorithm is an example of a DDA that is especially well
suited to integer arithmetic.

An incremental algorithm begins at the starting point and proceeds for some number of iterations,
calculating the location of a single pixel for each iteration. For each iteration, an increment or delta
is added to each coordinate to calculate the location of the next pixel in the line. The number of
iterations is the number of points in the line or the distance to be spanned.

The axis whose span is greater is called the step or major axis. For rendering into a discrete bit
map, the increment for the major axis is always set to unity. Exactly one pixel is drawn in each
scanline (for a Y-major line) or column (for an X-major line). There is no sense in calculating posi-
tions

between

 pixels (in the major axis). On the other hand, a dense line requires that pixels be
drawn just as close together as possible.

The increment for the other axis (the axis that is not the major axis) is the span for that axis divided
by the number of iterations (steps in the major axis). For lines drawn at 45 degrees, this is unity.
For any other angle, the increment for the minor axis is a proper fraction.

Figure 3-6 shows a line whose major axis is Y. The Y increment is unity (every pixel along the major
axis is plotted). The X increment is some fraction whose value depends on the exact slope of the
line. In this example, the actual value is somewhat less than two-fourths (a change of four pixels
along the Y axis is accompanied by a change of somewhat less than two in the X axis). Pixels are
plotted which most nearly correspond to the theoretical line.

POLYGON, RGB
INTERPOLATORS

TEXTURE
INTERPOLATOR

AND CACHE

X-Y CLIPPING, Z-CLIPPING,
DESTINATION MASKING,

TEXTURE MASKING

LIGHTING AND SATURATE STAGE

ALPHA BLENDING AND FOG STAGE

SRAM2

SRAM0, 1

Copyright 1996 – Cirrus Logic Inc. 3-11 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

Figure 3-6. Incremental Line-Drawing Algorithm

In addition to calculating the position of a pixel, DDAs are also used to calculate the color, depth,
of the pixel, as seen.

See Section 3.3.16 on page 3-30 for information on drawing lines using the CL-GD5464.

THEORETICAL LINE

Y INCREMENT = UNITY

X INCREMENT

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-12 Copyright 1996 – Cirrus Logic Inc.

3.3.2 Flat (Unshaded) Polygon

The CL-GD5464 can fill polygons that are random triangles of any orientation or quadrangles with
at least one flat top or bottom. The CL-GD5464 fills polygons by evaluating two (sometimes more
than two) incremental algorithms in parallel. Figure 3-7 illustrates a random triangle. It will be seen
that quadrangles with a flat top or bottom constitute an extension.

Set aside trivial triangles and co-linear triangles (they are either points or lines). That is, consider
only triangles with three unique vertices that are not all on a straight line.

Any triangle, regardless of its orientation, can be reduced to two triangles with a common horizon-
tal side. In particular, if the three vertices are sorted vertically, the common side is horizontally in
line with the center (or opposite) vertex. The side of the triangle opposite this center vertex always
spans the entire height of the triangle. This side is called the main slope. By definition, each side
of any triangle, including the main slope, is a straight line.

Once a random triangle has been reduced to two triangular areas that are each guaranteed to
have a horizontal side, it can be filled in two stages. Refer to Figure 3-7. In the first stage, Area 1
is filled, beginning at the Base vertex and working down, one scanline at a time, to the common
horizontal side. In the second stage, Area 2 is filled, beginning at the common horizontal side and
working down, one scanline at time, to the bottom vertex.

Figure 3-7. Two Triangles with Horizontal Side

BASE VERTEX

MAIN SLOPE

OPPOSITE
VERTEX

AREA 1

AREA 2

COMMON
HORIZONTAL SIDE

BOTTOM (END)
VERTEX

Copyright 1996 – Cirrus Logic Inc. 3-13 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

For each stage, two parallel DDAs are used. This is illustrated in Figure 3-8. One DDA finds the
main slope and the other DDA finds the width. The major axis is always Y, regardless of the orien-
tation of the main slope. This is an important difference from the DDA described in Section 3.3.1
and requires that the X delta be able to be larger than unity.

The Y-span of Area 1 is specified in Y_COUNT_3D[26:16]. This is an unsigned integer. The base
point is always at the lowest Y address in the triangle (the closest to the top of the screen). The X
delta is specified in DX_MAIN_3D. This is a signed real number. Since the X delta is signed, the
main slope can proceed either down and to the right or down and to the left.

The second DDA finds the width of the triangle. The width delta is specified in DWIDTH1_3D. This
is a signed real number. Since it is signed, the width can either increase or decrease (in practice,
it always increases in Area 1 of the triangle and decreases in Area 2). Figure 3-8 shows how
DWIDTH depends on both the slope of the main slope and the opposite slope. More precisely, the
opposite slope is determined by DX_MAIN and DWIDTH.

The triangle is filled a scanline at a time. For each scanline, beginning at the base, the correspond-
ing X point along the main slope is found. Then pixels are filled, along the scanline, to the current
width. The DDAs are incremented, calculating the next X point along the main slope, and the next
width. This continues for COUNT1 + 1 scanlines (specified in Y_COUNT_3D [26:16]), filling in
Area 1 of the random triangle.

Filling in the triangle a scanline at a time is efficient in terms of memory cycle usage and compu-
tationally.

Figure 3-8. DDAs for Main Slope and Width

MAIN SLOPE

BASE VERTEX

DX_MAIN

DWIDTH1

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-14 Copyright 1996 – Cirrus Logic Inc.

When the engine has filled in Area 1, it selects a new delta width constant from DWIDTH2_3D (the
second delta width is nearly always negative) and continues for COUNT2 (Y_COUNT_3D_[10:0])
scanlines, filling in Area 2. In Figure 3-9, the DWIDTH2 value is negative. The triangle becomes
more narrow as Area 2 is filled, coming to a point at the very bottom.

Figure 3-9. Completing the Triangle: Area 2

Observe that the main slope does not have an inflection point in it. DX_MAIN does not change
when the new DWIDTH value is loaded.

If the Count2 field is zero, only Area 1 is drawn, resulting in a triangle that is flat on the bottom.

BASE

MAIN SLOPE

AREA 1

AREA 2

COUNT1

COUNT2

Copyright 1996 – Cirrus Logic Inc. 3-15 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

3.3.3 Summary of Values Used for Flat Triangle

Table 3-2 summarizes the values required for drawing a flat triangle. In the range column, the
notation ‘.X’ indicates a 16-bit fraction. The formal description of these registers is in the

Laguna
VisualMedia

 Accelerators Family — CL-GD546X Volume I (Hardware Reference Manual, Sec-
ond Edition, September 1996)

.

These are the values the 3D engine has to have to draw a flat triangle. To draw a triangle in Copro-
cessor mode, these registers would be loaded and the engine started. To draw a triangle in Display
List mode, the instruction is followed by N register values, where N is specified in the draw instruc-
tion.

3.3.4 Scaled Numbers

Most of the values listed in Table 3-2 are real numbers (they have an integer part and a fractional
part). In each case where the value has a fractional part, it is scaled so that the radix point is
between bit position 15 and bit position 16. Even though these are real numbers, the radix point
is fixed and fixed point adders can be used. This is important both for gate count and speed con-
siderations.

Figure 3-10. Real Number Scaling

Table 3-2. Values Used for Flat Triangle

Value
Register

Name
Register
Offset

Range Note

Beginning X co-ordinate X_3D 0x4000 0 to 2047.X Bit 31 is X-direction

Beginning Y co-ordinate Y_3D 0x4004 0 to 2047.X

Red color value R-3D 0x4008 0 to 255.X

Green color value G_3D 0x400C 0 to 255.X Skip if palettized

Blue color value B_3D 0x4010 0 to 255.X Skip if palettized

Main Slope X increment DX_MAIN_3D 0x4014

−

2048.X to 2047.X

Y-Count for Area 1 Y_COUNT_3D 0x4018 0 to 2047 Bits 26:16

Y-Count for Area 2 Y_COUNT_3D 0x4018 0 to 2047 Bits 10:0

Width increment for Area 1 DWIDTH1_3D 0x4024

−

2048.X to 2047.X

Width increment for Area 2 DWIDTH2_3D 0x4028

−

2048.X to 2047.X

FRACTIONAL PARTINTEGER PART

0151627:23

SIGN EXTENSION
OR CONTROLS

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-16 Copyright 1996 – Cirrus Logic Inc.

Several of these registers have flags or control bits. Sign bits must be written into all unused bits.
The control bits in these registers are summarized in Table 3-3.

X_3D[31] controls whether the triangle is drawn to the left or the right of the main slope. This, in
conjunction with the sign of the DX_MAIN_3D, determines the orientation of the triangle. All four
cases are used. Figure 3-11 shows the four cases. The base point is at the top. The main slope is
drawn as the heavy line in each case.

Figure 3-11. DX Sign, Draw Left/Draw Right

The four edge disables are used when triangles abut. If two adjacent triangles are drawn with
blending, visible artifacts can result along their common edge if both write that common edge. By
suppressing one of the two from writing the edge, these artifacts can be prevented.

3.3.5 Gouraud Shading

In addition to flat triangles, the CL-GD5464 can draw triangles with Gouraud shading. Gouraud
shading uses linear interpolation, readily adaptable to a DDA. The application provides color val-
ues at the vertices, which are converted to register values by the 3D driver supplied by Cirrus
Logic. This process is called ‘triangle setup’.

There are a total of nine values that are involved with shading, three values for each of the three
colors: Red, Green, and Blue. Each color has its base value, and its Delta_Main and Delta_Ortho
values. Each base value is an unsigned number and each delta is a signed number. As usual, the
radix point for each is between bit position 15 and bit position 16.

Table 3-3. Control Bits

Register Bit Position Use

X_3D 31 X Direction: Polygon drawn to left or right from main slope

X_3D 30 Left Edge Disable: Do not draw left pixel in each scanline

X_3D 29 Right Edge Disable: Do not draw right pixel in each scanline

Y_3D 30 Top Edge Disable: Do not draw top pixel or scanline

Y_3D 29 Bottom Edge Disable: Do not draw bottom pixel or scanline

DX NEGATIVE
DRAW RIGHT

DX POSITIVE
DRAW RIGHT

DX NEGATIVE
DRAW LEFT

DX POSITIVE
DRAW LEFT

Copyright 1996 – Cirrus Logic Inc. 3-17 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

The color for each pixel along the main slope is calculated by incrementing the base color by the
delta_main for each Y increment. This is exactly analogous to the calculation of the X value along
the main slope. Now, as the scanline is filled, the color for each pixel is calculated by incrementing
the color at the main slope by the Delta_Ortho. Since each delta for each color is signed, each
color can change smoothly in two dimensions. This is illustrated in Figure 3-12 for Red. The other
two colors are exactly the same, except different registers contain the constants.

Gouraud shading is enabled by programming bit 12 of the drawing instruction (that is DRAW_LINE
or DRAW_POLY) to ‘1’. If Gouraud shading is enabled for draw line, the result is a shaded or depth
cued line. Gouraud shading does not make any sense for a point and bit 12 must be programmed
to ‘0’ in a draw point instruction. Gouraud shading can also be used with mapped color. If the color
palette contains several color ranges, the shading can be arranged to fit within the ranges. In this
case, the mapped color value is calculated using the Red parameters.

Note that the Delta_Main and Delta_Ortho are not necessarily orthogonal to each other.
Delta_Ortho always is along the X-axis, but Delta_Main is along the main slope, which may very
well not be vertical.

Figure 3-12. Gouraud Shading

Table 3-4 summarizes the values that are used for Gouraud shading. The Delta-Ortho values are
not used for lines.

Table 3-4. Values used for Gouraud Shading

Color Red Green Blue

Base color R_3D: 0x4008 G_3D: 0x400C B_3D: 0x4010

Delta main DR_MAIN_3D: 0x402C DG_MAIN_3D: 0x4030 DB_MAIN_3D: 0x4023

Delta_Ortho DR_ORTHO_3D: 0x4038 DG_ORTHO_3D: 0x403C DB_ORTHO_3D: 0x4040

R_3D

MAIN SLOPE

DR_MAIN_3D

DR_ORTHO_3D

(FOLLOWS MAIN SLOPE)

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-18 Copyright 1996 – Cirrus Logic Inc.

3.3.6 X-Y Clipping

X-Y clipping is used to confine the polygon to an arbitrary rectangular region. X-Y clipping does
not use any interpolators, the edges of the rectangle are fixed. Each of the four edges can be sep-
arately enabled with a ‘1’ in the respective enable bit. Table 3-5 summarizes the clipping controls
and values. If an edge is not enabled, the corresponding clipping value is ignored. The clipping
values have to make sense. Programming the Max value of either dimension to less than the cor-
responding Min value when both are enabled is an error.

3.3.7 Z-Buffering

Z-Buffering is used to remove surfaces (or parts of surfaces) that lie behind objects that are
already in the scene. The depth (usually defined as the distance from the viewer) of each pixel of
an object is calculated as the object is rendered. The depth of current pixel is compared to the
depth of the corresponding pixel (in the frame buffer) of the object previously rendered. This
requires a buffer large enough to contain a depth value for every pixel, usually called the Z-Buffer.
Depending on the outcome of the comparison, the new pixel and depth can replace the previous
pixel and depth. Typically the comparison is: ‘Is this pixel in the current object closer to the viewer
than the same pixel already in the scene?’. Thus, objects (or parts of objects) closest to the viewer
are displayed on the screen.

The calculation of the Z-value for a pixel is exactly analogous to the calculation of any of the three
color values. The initial value is specified for the base point. This is incremented by DZ_MAIN for
each iteration in Y as the main slope is traversed. Each value along the main slope is incremented
in turn by the value DZ_ORTHO for each pixel in the scanline. Since the increments are both
signed, the depth of the object can change smoothly in two dimensions as the object is rendered.
If the entire object is at a constant depth, the delta values would be set to zero. Table 3-6 summa-
rizes the values that are used for Z-depth. The Delta_Ortho value is not used for lines.

Table 3-5. X-Y Clipping Controls

Edge Register Enable
Clipping

Value

XMax X_CLIP_3D: 0x4160 Bit 31 26:16

XMin X_CLIP_3D: 0x4160 Bit 15 10:0

YMax Y_CLIP_3D: 0x4164 Bit 31 26:16

YMin Y_CLIP_3D: 0x4164 Bit 15 10:0

Table 3-6. Values Used for Z-depth

Value Register

Base depth Z_3D: 0x4044

Delta main DZ_MAIN_3D: 0x4048

Delta_Ortho DZ_ORTHO_3D: 0x404C

Copyright 1996 – Cirrus Logic Inc. 3-19 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

The Z-depth function is enabled by programming bit 13 of the drawing instruction to ‘1’. Z-depth
can be used for all the draw instructions. There are a number of fields that control the Z-depth func-
tion, summarized in Table 3-7 and Table 3-8.

Z-mode in CONTROL0_3D[30:28] controls whether a comparison is necessary and which buffers
are updated when the compare is true.

Z_COMPARE_MODE

 in CONTROL0_3D[23:20] specifies the compare function (that is, the rela-
tionship between the old value and new value that results in the comparison being true).

Z_COLLISION_DETECT_EN

 in CONTROL0_3D[24] specifies whether a Z-collision sets the
Z_COLLISION Event Status bit in STATUS0_3D[0]. In this context, a collision is any true compare.
A ‘1’ enables the collision detection.

Z-collision provides a method of determining whether an object is totally occluded and can be
bypassed. The depth of each pixel in the object is computed and compared to the depth of the
corresponding pixel in the frame buffer without changing either the frame buffer or Z-buffer. Since
only the position and depth of each pixel is computed, this can be substantially faster than actually
rendering the object (calculating color, lighting, and so on). Once the application knows if the

Table 3-7. Z Mode: CONTROL0_3D[30:28]

Z-
Mode

Z-Mode
Name

Z-Buffer
Update

Pixel
Update

Description

000 Z-normal Z-compare Z-compare Update both Z-buffer and frame buffer if compare true

001 Z-mask Never Z-compare Update only frame buffer if compare true

010 Z-always Always Always Update both Z-buffer and frame buffer without comparison

011 Z-only Z-compare Never Update Z-buffer if compare true

100 Z-hit Never Never Set Z-collision flag and records Z-hit and Z-value

101 Reserved – – –

110 Reserved – – –

111 Reserved – – –

Table 3-8. Z-Compare Mode: CONTROL0_3D[23:20]

Z-Compare Mode Compare is TRUE if: Note

0000 New value >= old value Greater than or equal to

0001 New value > old value Strictly greater than

0010 New value <= old value Less than or equal to

0011 New value < old value Strictly less than

0100 New value != old value Not equal

0101 New value == old value Equal

0110–1111 Reserved –

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-20 Copyright 1996 – Cirrus Logic Inc.

object is at least partially visible, it can then go back and actually render it (or at least the part that
is visible).

Another use for Z-collision is to detect that two objects are within the same ‘Z’ space.

Z_STRIDE_CONTROL

 in CONTROL0_3D[16] specifies whether the Z-buffer is 8 or 16 bits per
pixel. A ‘1’ selects eight bits. This allows the Z-buffer to be stored with the actual pixels in 24-bpp
modes. Each pixel actually occupies 32 bits, one byte each of Red color, Green color, Blue color,
and Depth. If the fourth byte is used for the Z-buffer, it cannot simultaneously be used for Alpha.

For game programming, sometimes objects are rendered only once. Examples of such objects
are the dashboard of the car in a racer simulation or the cockpit of an aircraft in a flight simulator.
The 8-bit Z-stride allows for 256 levels of overlay. Thus, if the game already controls the depth, the
overlay field can increase rendering speed.

Z_BUFFER_LOCATION

 in BASAE0_ADDR_3D[14] specifies whether the Z-buffer in is host pro-
cessor memory (‘1’) or in the RDRAM (‘0’).

3.3.8 Color Transparency

Color transparency, another form of overlay, is also supported during triangle rendering. A color
compare range for each of the three colors allows the background to project through. The control
bits for color compare are summarized in Table 3-9.

Table 3-10 summarizes the source of the comparison values.

Depending on the color depth, the bits defining each color have to be replicated to fill the 8-bit
comparison value. The following three tables show, for each pixel mode, how the color bits must

Table 3-9. Color Compare Controls (CONTROL0_3D: 0x4104)

Control CONTROL0_3D Function

Color_Compare_Mode Bit 10 1: Mask inclusive to bounds
0: Mask exclusive to bounds

Blue_Color_Compare_En Bit 9 1: Enable blue compare

Green_Color_Compare_En Bit 8 1: Enable green compare

Red_Color_Compare_En Bit 7 1: Enable red compare

Table 3-10. Color Compare Bounds

Color
Minimum

COLOR_MIN BOUNDS_3D: 0x4108
Maximum

COLOR_MAX_BOUNDS_3D: 0x410C

Red [23:16] [23:16]

Green [15:8] [15:8]

Blue [7:0] [7:0]

Copyright 1996 – Cirrus Logic Inc. 3-21 September 1996

CL-GD546X Software Technical Reference Manual

3D PROGRAMMER’S GUIDE

be expanded to 8 bits. Each color value is replicated from left to right as many times as is neces-
sary to fill the 8-bit compare value.

Table 3-11. Color Bit Expansion: Red

Red Value 23 22 21 20 19 18 17 16

24-bpp, a:8:8:8 23 22 21 20 19 18 17 16

16-bpp, 5:6:5 15 14 13 12 11 15 14 13

15-bpp, a:5:5:5 14 13 12 11 10 14 13 12

8-bpp, 3:3:2 7 6 5 7 6 5 7 6

Table 3-12. Color Bit Expansion: Green

Green Value 15 14 13 12 11 10 9 8

24-bpp, a:8:8:8 15 14 13 12 11 10 9 8

16-bpp, 5:6:5 10 9 8 7 6 5 10 9

15-bpp, a:5:5:5 9 8 7 6 5 9 8 7

8-bpp, 3:3:2 4 3 2 4 3 2 4 3

Table 3-13. Color Bit Expansion: Blue

Blue Value 7 6 5 4 3 2 1 0

24-bpp, a:8:8:8 7 6 5 4 3 2 1 0

16-bpp, 5:6:5 4 3 2 1 0 4 3 2

15-bpp, a:5:5:5 4 3 2 1 0 4 3 2

8-bpp, 3:3:2 1 0 1 0 1 0 1 0

3D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 3-22 Copyright 1996 – Cirrus Logic Inc.

3.3.9 Lighting

The lighting stage allows each of the three colors to be multiplied by a common value. This func-
tion is enabled by programming the instruction modifier bit 18 to ‘1’. The source for the lighting mul-
tiplier is selected with Light_Src_Sel in CONTROL0_3D[26:25], as summarized in Table 3-14.

3.3.10 Saturation

When the CL-GD5464 is configured for 8-bpp Color LUT mode, color saturation can be enabled
by programming bit 6 of CONTROL0_3D to ‘1’. When this bit is set, the color value (index into the
LUT) from this stage is forced to be within the values programmed in the registers summarized in
Table 3-15.

This is used when the color palette has a series of color ramps for shaded objects. It clamps the
index to prevent it from drifting into the color space of other objects. This mode does not require
extra overlay fields as in the 24-bpp modes, but does require some color resolution trade-off for
overlay capability.

3.3.11 Alpha Blending

Alpha blending provides a means of combining the data already in the frame buffer with the object
being rendered. Alpha is the blending coefficient. It determines the ratio of source to destination
of the value actually written. Alpha blending is enabled by programming CONTROL0_3D[15] to
‘1’. The Alpha-mode field in CONTROL0_3D controls the inputs into the alpha blending stage as
summarized in Table 3-16.

Table 3-14. Lighting Multiplier Source

Light_Src_Sel Source Used For

00 Polygon engine RGB source from interpolators in 3D engine

01 LM interpolator Interpolated lighting

10 COLOR_REG1_3D Fixed color lighting

11 Reserved (unused)

Table 3-15. Color Saturation Values

Value Register Bits

Minimum bound COLOR_MINBOUNDS_3D: 0x4108 31:24

Maximum bounds COLOR_MAX_BOUNDS_3D: 0x410C 31:24

Table 3-16. Alpha_Mode Field (CONTROL0_3D [12:11])

Alpha
Mode

Source
Alpha

Destination
Alpha

Note

00 DA_MAIN_3D DA_ORTHO_3D Fixed alpha blending

01 n/a n/a Reserved

Copyright 1996 – Cirrus Logic Inc. 3-23 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Interpolated alpha blending can be used when the transparency of the object being rendered is
not a constant. The LA interpolator is exactly analogous to the Gouraud shading interpolators and
can be used for either Lighting or Alpha (but not both at the same time). There is an unsigned base
value and two signed deltas. These values are summarized in Table 3-17. When interpolated
alpha is being used, these are real numbers. As usual, the radix point is between bit position 15
and bit position 16. The two deltas are signed numbers, allowing the interpolated alpha value to
vary smoothly in two dimensions as the object is rendered.

When the alpha value is interpolated, the source alpha is the interpolated value and the destina-
tion alpha is 256 minus the interpolated value.

Fixed alpha blending can be used when the transparency of the object being rendered is con-
stant. The contributions of the source and destination pixels are specified separately. The values
are summarized in Table 3-18. The constants are interpreted as the numerator of a fractional mul-
tiplier whose denominator is fixed at 256. There is a radix point between bit position 15 and bit
position 16. A constant of 0x00 means that the corresponding source or destination contributes
nothing to the output color. A constant of 0x100 (decimal 256) means the corresponding source
or destination contributes unity to the output value. Constants in between result in corresponding
amounts contributed to the output value. The constants do not have to add up to unity.

10 LA interpolator 255 minus LA interpolator Interpolated alpha
blending

11 Alpha byte from frame buffer 255 minus Alpha byte Frame buffer alpha
blending

Table 3-17. LA Interpolator Values

Value Register

Base Alpha A_3D: 0x40C0

Delta Main DA_MAIN_3D: 0x40C4

Delta Ortho DA_ORTHO_3D: 0x40C8

Table 3-18. Fixed Alpha Constants

Multiplier Register

Source Pixel DA_MAIN_3D: 0x40C4

Destination Pixel DA_ORTHO_3D: 0x40C8

Table 3-16. Alpha_Mode Field (CONTROL0_3D [12:11]) (cont.)

Alpha
Mode

Source
Alpha

Destination
Alpha

Note

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-24 Copyright 1996 – Cirrus Logic Inc.

Alpha_Dest_Color_Select in CONTROL0_3D[14:13] specifies the source of the destination
pixel that is mixed with the object being rendered. This is summarized in Table 3-19.

3.3.12 Additional Notes on Lighting

The CL-GD5464 color path supports lighting, blending, and fog within a single-render operation.
The data rate, after the pipeline is filled, is 12 ns/texel or 80 MHz. This allows one pixel out for
every clock cycle. Now the real throughput is determined by how well the source data (that is,
alpha source, texture source, and Z-buffer source) are supplied to the input side of the equation.

A simple guideline can be used to estimate the rasterization rate for 16-bpp data source. Simply
divide the number of sources by the master clock rate. Some examples are given in Table 3-20.

This is only a guideline and many variables apply. For example, the internal texture cache elimi-
nates some of the texture source fetches. In fact, if the texture fits entirely in the cache, then the
texture adder is eliminated altogether. In all cases, the data-path pipeline always runs through the
master equation at the full 80-MHz clock rate (that is, if all source data is present, then perspective,
3D lighted, textures will output at the full 80-MHz clock).

Table 3-19. Alpha_Dest_Color_Select

Alpha_Dest_Color_Select Alpha Dest Source Note

00 Existing frame buffer data Fetch_Color (Instruction [23]) set

01 COLOR_REG1_3D –

10 Polygon engine interpolators With shading, patterning

11 Reserved –

Table 3-20. Estimating Rasterization Rate

Example Sources Rate at 80 MHz Note

2D texture mapped polygon 2 40 MHz Master clock rate / 2

3D texture polygon 4 20 MHz Master clock rate / 4

3D texture with alpha blending 6 13.3 MHz Master clock rate / 6

Copyright 1996 – Cirrus Logic Inc. 3-25 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.3.13 Data Path Equation

The CL-GD5464 master data path equation is shown below:

Equation 3-1

where:
Cs is the RGB components of the source color. These are the Gouraud values from the CL-GD5464 RGB color inter-
polators.
T is the Transparency Enable bit, valid only in the 1:8:8:8 and 1:5:5:5 Texture modes. This bit can be considered the
Alpha Texture Enable bit.
Ct is the RGB components of the texture map when in any of the 4- or 8-bit Texture Index mode or the Direct Color
modes 3:3:2, 5:6:5, 1:5:5:5, 8:8:8, or 1:8:8:8. Ct is indexed texture when in the 8-bit Color Lookup mode. It shares
the same color palette index (the color value) with the normal color lookup.
A is the Alpha blending term and has three sources, as shown in Table 3-16.
Lm is the modulator for lighting, and has three sources, as shown in Table 3-14.
Cc is typically the RGB destination read values, but can also take on two other forms. For DECAL texture Cc can
be the RGB Gouraud interpolation values. For fog or depth cueing, Cc can be a fixed value from
COLOR_REG1_3D.

This equation allows for full lighting and blending operation in a single pass, supporting fog, tex-
ture, and alpha blend.

An additional interpolation unit is used to satisfy fog rendering. For fog, an independent color ramp
blended with the source fragment is required. The Cc(255-A) term in the equation becomes the
Fog adder, where ‘A’ is from the separate alpha interpolator. This allows FOG on Decal textured
objects when in the 1:8:8:8 and 1:5:5:5 display modes. The Lm term allows for lighting during the
same render operation. It is important to remember that this can be scaled down by entering
zeroes for the T and Lm fields. Here the term {CS(T)+Ct(1-T)} can be consolidated as Cf, or the
result fragment. Thus the FOG equation can be re-written without lighting:

Equation 3-2

and with lighting:

Equation 3-3

Note that during Decal Texture mode, lighting the fog requires an extra rendering step. Alternately,
for Non-Decal Texture mode, the Cc term can be sourced as an independent light source for the
fog component.

Depending on the speed, quality, and function requirements, the CL-GD5464 can ‘Decal’ texture
in multiple ways. The simplest and most common method is to use the 1:8:8:8 or 1:5:5:5 texture
modes. This gives a single-pass rendering of transparent Gouraud shading seen through textured
objects. In this case the MSB of the texture map selects between shaded and textured operation.
This selection is done ‘on the fly’ as the texture map information is read in the device. During the
same operation, the result can also be lit with white by the addition of the ‘Lm’ term. In addition,
blending of previously rendered backgrounds seen through the Decal can be added during this
single-pass operation.

Cs T() Ct 1 T–()+{ } A•[] Lm Cc 255 A–()+•

Cf A Cc 255 A–()+•

Cf A•() Lm• Cc 255 A–()+

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-26 Copyright 1996 – Cirrus Logic Inc.

The following equations show three cases for the 1:8:8:8 and 1:5:5:5 modes. The MSB in the tex-
ture map is used to select between texture and shaded sources (‘T’ in the equations).

Trivial, no lights, no blending. ‘T’ is either ‘0’ or ‘1’:

Equation 3-4

Decal Texture with lighting, no blending. Lm is from alpha interpolator. A=0xff.

Equation 3-5

Decal texture with lighting and blending. Cdest is read from the frame buffer, A is either fixed alpha
or frame alpha (the blend factor):

Equation 3-6

3.3.14 Texture and Perspective Texture Mapping

Texture mapping is the process of reading a 2D map or image and stretching (‘mapping’) that
image onto a 3D surface. Conventional techniques use many small triangles to give more detail
to the final image. With the process of texture mapping, large triangles can be used and the appli-
cation of a detail map can be used to give a satisfactory appearance.

The CL-GD5464 uses first- and second-order differentiation to approximate the divide operation
required by perspective mapping. Thus, as triangles that have texture applied are drawn into the
distance, a perspective operation is applied to approximate the curve. Linear (or affine) texture
does not require a perspective divide. Because of this, objects that traverse into the distance do
not look correct. Algorithms that subdivide large polygons can be applied to correct the accumu-
lated perspective error.

The texture engine uses inverse mapping techniques and runs in parallel with the polygon engine.
The CL-GD5464 architecture allows for full random triangle mapping with perspective correction.
The driver receives U, V, W, and texture map base-address information and converts them into
values suitable for the registers. The texture map information can be in RDRAM, host system
memory, or both and is read into an internal texture cache.

Texture mapping is illustrated in Figure 3-13. The location of the pixels are being calculated using
the values and interpolators described in Section 3.3.2. In parallel, the U and V pointers into the
texture map are being calculated with separate interpolators. Then the data from the texture map,
addressed by U and V, is written into the object being rendered, addressed by X and Y. The normal

Cs T() Ct 1 T–()+{ }

Cs T() Ct 1 T–()+{ } Lm•

Cs T() Ct 1 T–()•{ } A•[] Lm• Cdest 255 A–()+

Copyright 1996 – Cirrus Logic Inc. 3-27 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

shading calculations can be executed in parallel with this to provide a color to be used instead of
the color from the texture map.

Figure 3-13. Texture Mapping Overview

In some cases, calculating pointers into the texture map using linear interpolation does not yield
sufficiently convincing results. Consider the example illustrated in Section 3-14.

Figure 3-14. Perspective Texture Mapping Example

The actual distance (along the road) between the signs is a constant, as is the size of the signs.
But the signs appear closer together as they go further into the distance (as well as appearing

TEXTURE MAP

BASE
U

V

MAP (U,V)

OBJECT BEING RENDERED

FRAME (X,Y)

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-28 Copyright 1996 – Cirrus Logic Inc.

smaller). This is a curve and requires a divide to calculate exactly. The CL-GD5464 uses second-
order terms to approximate the curve.

The texture formats are summarized in Table 3-21. The format is specified in TX_CTL0_3D [10:8].

In the 8-bpp LUT mode, the TLUT can be subdivided into multiple maps with the texture index off-
set address into the TLUT.

The source of the constants used to calculate ‘V’ and ‘U’ (the values used to select an entry in the
texture map) are summarized in Table 3-22. The first six (V, DV_MAIN, DV_ORTHO, U, DU_MAIN,
and DU_ORTHO) are evaluated using ‘standard’ interpolation, exactly the same as Gouraud
shading. The second-order values are used for perspective texture mapping.

Table 3-21. Texture Formats

Texel Size Format Note

4-bpp TLUT 16 maps, each map of 16 colors from a palette of 16 million

8-bpp TLUT 1 map, of 256 colors from a palette of 16 million

8-bpp 3:2:2 Hardware dither

16-bpp 5:6:5 Hardware dither

16-bpp 1:5:5:5 Bit 15 can be used as mask or as source select in Decal mode

32-bpp a:8:8:8 Bit 31 can be used as mask or as source select in Decal mode

32-bpp Z:8:8:8 8-bpp Z-buffer

Table 3-22. Texture Mapping: V and U Constants

Constant V U Note

Base point V_3D: 0x4050 U_3D: 0x4054

‘Standard’
interpolationDelta main DV_MAIN_3D: 0x4058 DU_MAIN_3D: 0x405C

Delta_Ortho DV_ORTHO_3D: 0x4060 DU_ORTHO_3D: 0x4064

Second-order main D2V_MAIN_3D: 0x4068 D2U_MAIN_3D: 0x406C

Perspec t i ve
onlySecond-order ortho D2V_ORTHO_3D: 0x4070 D2U_ORTHO_3D: 0x4074

Ortho add DV_ORTHO_ADD_3D: 0x4078 DU_ORTHO_ADD_3D: 0x407C

Copyright 1996 – Cirrus Logic Inc. 3-29 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.3.15 Quadrangles

The CL-GD5464 can draw quadrangles that have a flat top or bottom (or both). Table 3-23 sum-
marizes two registers that can be used to set the initial width (at the top of) Area 1 and Area 2.
These are both unsigned numbers in the range 0 to 2047.X. As usual, there is a radix point
between bit position 15 and bit position 16.

A quadrangle that is flat on the top is shown in Figure 3-15. As always, one side has to span the
entire height of the polygon. The base point is at the top of the main slope. Since the initial width
is non-zero, the top of the polygon is not a point, but is rather a flat line. The initial widths are
enabled by programming bit 24 of the draw instruction to ‘1’. Width1 and Width2 are enabled
together. If one is required, the other must be specified even though it may not be otherwise
required.

Figure 3-15. Quadrangle with Flat Top

A quadrangle that is flat on the bottom is shown in Figure 3-16. This can be drawn by the simple
expedient of setting the delta width2 (DWIDTH2) so that the object does not come to a point at the
bottom. It is possible to draw quadrangles that are flat both on the top and bottom.

Figure 3-16. Quadrangle with Flat Bottom

Table 3-23. Initial Width Value

Area Register

1 WIDTH1_3D: 0x401C

 2 WIDTH2_3d: 0x4020

MAIN SLOPE

BASE POINT

WIDTH1

WIDTH2OPPOSITE POINT

BASE POINT

MAIN SLOPE

OPPOSITE POINT

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-30 Copyright 1996 – Cirrus Logic Inc.

3.3.16 Lines and Points

Lines and points can be considered small polygons. Different instructions are used to draw them
and different (fewer) registers are used. Table 3-24 summarizes the registers required for each
object. ‘Skip if’ means the object requires the register unless one or more of the skip cases is pro-
grammed.

The CL-GD5464 can draw lines with Gouraud shading, Z-buffering, and alpha blending. Basically,
a line is just the main slope of a polygon. The Delta-Orthos are not used, but everything that
applies to the main slope of a polygon applies to a line, including texturing.

When lines are drawn with a slope of less than 45 degrees, they are X-major rather than Y-major.
See Section 3.5.3.5.

Table 3-24. Register Summary

Address
Offset

Register Polygon Line Point Skip Case(s)

0x4000 X_3D Always Always Always –

0x4004 Y_3D Always Always Always –

0x4008 R_3D Skip if Skip if Skip if –

0x400C G_3D Skip if Skip if Skip if Mapped color

0x4010 B_3D Skip if Skip if Skip if Mapped color

0x4014 DX_MAIN_3D Always Always Never –

0x4018 Y_COUNT_3D Always Always Never –

0x401C WIDTH1_3D Skip if Always Never Initial width off

0x4020 WIDTH2_3D Skip if Never Never Initial width off

0x4024 DWIDTH1_3D Always Never Never –

0x4028 DWIDTH2_3D Always Never Never –

0x402C DR_MAIN_3D Skip if Skip if Never Gouraud off

0x4030 DG_MAIN_3D Skip if Skip if Never Mapped color,
Gouraud off

0x4034 DB_MAIN_3D Skip if Skip if Never Mapped color,
Gouraud off

0x4038 DR_ORTHO_3D Skip if Never Never Gouraud off

0x340C DG_ORTHO_3D Skip if Never Never Gouraud off

0x4040 DB_ORTHO_3D Skip if Never Never Gouraud off

0x4044 Z_3D Skip if Skip if Skip if Z off

0x4048 DZ_MAIN_3D Skip if Skip if Never Z off

0x404C DZ_ORTHO_3D Skip if Never Never Z off

Copyright 1996 – Cirrus Logic Inc. 3-31 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

0x4050 V_3D Skip if Skip if Skip if Texture off

0x4054 U_3D Skip if Skip if Skip if Texture off

0x4058 DV_MAIN_3D Skip if Skip if Never Texture off

0x405C DU_MAIN_3D Skip if Skip if Never Texture off

0x4060 DV_ORTHO_3D Skip if Never Never Texture off

0x4064 DU_ORTHO_3D Skip if Never Never Texture off

0x4068 D2V_MAIN_3D Skip if Skip if Never Texture off,
perspective off

0x406C D2U_MAIN_3D Skip if Skip if Never Texture off,
perspective off

0x4070 D2V_ORTHO_3D Skip if Never Never Texture off,
perspective off

0x4074 D2U_ORTHO_3D Skip if Never Never Texture off,
perspective off

0x4078 DV_ORTHO_ADD_3D Skip if Never Never Texture off,
perspective off

0x407C DU_ORTHO_ADD_3D Skip if Never Never Texture off,
perspective off

0x40C0 A_3D Skip if Skip if Never Alpha load off

0x40C4 DA_MAIN_3D Skip if Skip if Never Alpha load off

0x40C8 DA_ORTHO_3D Skip if Never Never Alpha load off

Table 3-24. Register Summary (cont.)

Address
Offset

Register Polygon Line Point Skip Case(s)

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-32 Copyright 1996 – Cirrus Logic Inc.

3.4 3D Memory Organization

The CL-GD5464 has several models for 3D memory. The basic views of memory are listed below.

1) The view of frame buffer memory from the system processor (across PCI bus).

2) The view of the register set from the system processor (across PCI bus).

3) The view of the following system memory objects from the CL-GD5464 viewpoint:

a) Display list memory.

b) Z-buffer and color map buffers when in system memory.

c) Texture memory when in system memory.

4) The READ_DEV_REGS_3D — multiple command’s view of the system memory location where to write
data.

3.4.1 System Memory Space View of Frame Buffer Memory

The CL-GD5464 register set is visible in system memory at the location selected by the PCI con-
figuration register for the Memory-Mapped registers (PCI10). Registers can be written directly by
adding their offsets to the initial CL-GD5462 Memory-Mapped register address. Alternatively, one
or more registers can be written in a stream by the WRITE_3D_REGISTER (new CL-GD5464 reg-
isters), or the WRITE_DEVICE_REGS (CL-GD5462 registers) commands. This last operation
can either be done by a display list or by directly programming its data to the HOST_3D_DATA
offset from the base PCI Address register for the Memory-Mapped registers.

3.4.2 System Processor (Across PCI Bus) View of the Register Set

The CL-GD5464 Memory-Mapped 3D registers are listed in Table 3-25.

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers

Byte Lane

Offset 3 2 1 0

4000h X_3D

4004h Y_3D

4008h R_3D

400Ch G_3D

4010h B_3D

4014h DX_MAIN_3D

4018h Y_COUNT_3D

401Ch WIDTH1_3D

4020h WIDTH2_3D

4024h DWIDTH1_3D

4028h DWIDTH2_3D

Copyright 1996 – Cirrus Logic Inc. 3-33 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

402Ch DR_MAIN_3D

4030h DG_MAIN_3D

4034h DB_MAIN_3D

4038h DR_ORTHO_3D

403Ch DG_ORTHO_3D

4040h DB_ORTHO_3D

4044h Z_3D

4048h DZ_MAIN_3D

404Ch DZ_ORTHO_3D

4050h V_3D

4054h U_3D

4058h DV_MAIN_3D

405Ch DU_MAIN_3D

4060h DV_ORTHO_3D

4064h DU_ORTHO_3D

4068h D2V_MAIN_3D

406Ch D2U_MAIN_3D

4070h D2V_ORTHO_3D

4074h D2U_ORTHO_3D

4078h DV_ORTHO_ADD_3D

407Ch DU_ORTHO_ADD_3D

4080h:40BCh

40C0h A_3D

40C4h DA_MAIN_3D

40C8h DA_ORTHO_3D

40CCh:40F8h

40FCh OPCODE_3D

4100h CONTROL_MASK_3D

4104h CONTROL0_3D

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers (cont.)

Byte Lane

Offset 3 2 1 0

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-34 Copyright 1996 – Cirrus Logic Inc.

4108h COLOR_MIN_BOUNDS_3D

410Ch COLOR_MAX_BOUNDS_3D

4110h CONTROL1_3D

4114h BASE0_ADDR_3D

4118h BASE1_ADDR_3D

411Ch Reserved

4120h TX_CTL0_3D

4124h TX_XYBASE_3D

4128h TX_CTL1_3D

412Ch TX_CTL2_3D

4130h COLOR_REG0_3D

4134h COLOR_REG1_3D

4138h Z_COLLIDE_3D

413Ch STATUS0_3D

4140h PATTERN_RAM_0_3D

4144h PATTERN_RAM_1_3D

4148h PATTERN_RAM_2_3D

414Ch PATTERN_RAM_3_3D

4150h PATTERN_RAM_4_3D

4154h PATTERN_RAM_5_3D

4158h PATTERN_RAM_6_3D

415Ch PATTERN_RAM_7_3D

4160h X_CLIP_3D

4164h Y_CLIP_3D

4168h TEX_SRAM_CTRL_3D

416Ch:41FCh

4200h HXY_BASE0_ADDRESS_PTR_3D

4204h HXY_BASE0_START_3D

4208h HXY_BASE0_EXTENT_3D

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers (cont.)

Byte Lane

Offset 3 2 1 0

Copyright 1996 – Cirrus Logic Inc. 3-35 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

420Ch Reserved

4210h HXY_BASE1_ADDRESS_PTR_3D

4214h HXY_BASE1_OFFSET0_3D

4218h HXY_BASE1_OFFSET1_3D

421Ch HXY_BASE1_LENGTH_3D

4220h:43Ch

4240h HXY_HOST_CTRL_3D

4244h:425Ch

4260h MAILBOX0_3D

4264h MAILBOX1_3D

4268h MAILBOX2_3D

426Ch MAILBOX3_3D

4270h:43FCh

4400h PF_BASE_ADDR_3D

4404h PF_CTL_3D

4408h PF_DEST_ADDR_3D

440Ch PF_FB_SEG_3D

4410h:441Ch

4420h PF_INST_ADDR_3D

4424h PF_STATUS_3D

4428h:443Ch

4440h HOST_MASTER_CTL_3D

4444h:447Ch

4480h PF_INST_3D

4484h:47FCh

4800h:4BFCh HOST_3D_DATA_PORT

4C00h:4FFCh HOST_TEXTURE_DATA_PORT

Table 3-25. CL-GD5464 Memory-Mapped 3D Registers (cont.)

Byte Lane

Offset 3 2 1 0

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-36 Copyright 1996 – Cirrus Logic Inc.

3.4.2.1 Memory-Mapped I/O

Most registers in the CL-GD5464 are accessed using memory-mapped I/O. There is a 32-Kbyte
extent, comprising four 4-Kbyte apertures. The programmer should program the base address into
PCI10: MMI/O Base Address register.

The registers that are accessible using memory-mapped I/O are described in the Laguna
VisualMedia Accelerators Family — CL-GD546X Volume I (Hardware Reference Manual, Sec-
ond Edition, September 1996). The MMI/O offset for each register is given in the register descrip-
tion, and in the summary table at the beginning of each respective chapter.

The 2D Graphics Accelerator register set resides at the beginning of the 32-Kbyte extent of mem-
ory. This aperture is 16-Kbyte in length to provide for four different bi-endian data swapping
modes. The 3D register set begins at the next 16-Kbyte above the 2D register set (for a total of 32
Kbytes) and is organized as shown in Table 3-26.

NOTE: In this manual, the address of the register in the first aperture is used generically to represent reg-
ister locations.

3.4.2.2 I/O-Mapped Registers

There are registers accessible using normal I/O.

These are the VGA Core registers and Extended I/O registers, described in the Laguna
VisualMedia Accelerators Family — CL-GD546X Volume I (Hardware Reference Manual, Sec-
ond Edition, September 1996). The I/O-Mapped registers have fixed addresses that are nearly all
standard VGA.

A few registers are accessible both in the memory and I/O space. Most of these are in the CRT
Controller and each have addresses in the appropriate columns of the summary tables in each
chapter.

Table 3-26. CL-GD5464 Register Apertures

MMI/O Offset Contents Format

3D Register Set

7000h CL-GD5464 4-Kbyte register aperture Bytes swapped within dword

6000h CL-GD5464 4-Kbyte register aperture Bytes swapped within dword (same as above)

5000h CL-GD5464 4-Kbyte register aperture Bytes swapped within words

4000h CL-GD5464 4-Kbyte register aperture No swapping (default)

2D Register Set

3000h CL-GD5462 4-Kbyte aperture Bytes swapped within dword

2000h CL-GD5462 4-Kbyte aperture Bytes swapped within dword (same as above)

1000h CL-GD5462 4-Kbyte aperture Bytes swapped within words

0000h CL-GD5462 4-Kbyte aperture No swapping

Copyright 1996 – Cirrus Logic Inc. 3-37 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.4.3 System Memory Objects View from the CL-GD5464

3.4.3.1 3D General System Memory Objects

There are three memory objects that can be in system memory (logically four, since Z and color
buffer are combined). These are Z-buffer, color buffer, texture buffer, and display list buffer. The
display list can only be in system memory.

Each of these objects must be in locked memory for the CL-GD5464 PCI bus master to reliably
locate them. They can either be located with a fixed, contiguous physical memory region of up to
4 Mbytes or in a non-contiguous virtual memory space of up to 4 Mbytes. The CL-GD5464 pro-
vides the translation from virtual-to-physical addresses through a software-created translation
table in locked physical memory. These two cases are distinguished by a control within
CL-GD5464 as well as the indication as to whether the objects are in system memory or in frame
buffer memory.

3.4.3.2 Virtual Memory Translation

The 3D engine’s XY to linear conversion generates a 22-bit byte address (‘A’) corresponding to
the XY address. Some memory objects such as ‘Z’, texture, and color buffers have offsets that are
added to X and Y prior to this conversion. This address is illustrated below.

The virtual memory address (‘A’) is treated in one of two ways. For virtual memory translation
(bit 0 of the BASE_ADDRESS_XX register for that object is ‘1’), bits 31:12 of the
BASE_ADDRESS_XX register (‘B’) point to a physical memory location for a 4-Kbyte virtual trans-
lation table for that system memory object.The Base Address (‘B’) for the system memory object
is illustrated below.

Bits 21:12 [A1] of the virtual memory address [A] index one of 1024 dword entries in the virtual
memory translation table. The 4-Kbyte translation table in physically locked down system memory

Table 3-27. Linear Address

31 22 21 12 11 0

Field Name A0 A1 A2

Bits 31-22 of virtual address
(these bits are ignored)

Bits 21:12 of virtual
address Bits 11:0 of virtual address

Table 3-28. Base Address

31 12 11 1 0

Field Name B0 B1 B2

Bits 31:12 of system memory base address
(points to the virtual address translation table
for this object — on 4-Kbyte boundary).

Reserved in v i r tua l
mode. Write 0s

0 = Physical
1 = Virtual

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-38 Copyright 1996 – Cirrus Logic Inc.

contains 1-Kbyte, 32-bit translation entries. (This yields a 4-Mbyte maximum size for each system
memory object). Translation table entries (‘C’) have the following format illustrated below.

Each 32-bit translation table entry defines the upper 20 bits of the final physical address that
corresponds to the original virtual address. The translations for four entries in the table (a set for
each object) are cached in the CL-GD5464 to reduce translation table fetches for high-locality
accesses. The final physical address corresponding to the original XY address is illustrated
below.

Bits 11:2, of the virtual address, are concatenated to the upper 20 bits just looked up in the table
to form the physical address used by the CL-GD5464 to fetch the indicated data.

3.4.3.3 Physical Memory Addressing

The engine’s XY to linear conversion generates a 22-bit byte address (‘A’) corresponding to the
XY address. (Some memory objects such as Z, texture, and color buffers have offsets that are
added to X and Y prior to this conversion. The virtual memory address (‘A’), resulting from XY lin-
ear conversion (23-bit byte address), is illustrated below.)

Table 3-29. Translation Table Entry

31 12 11 1 0

Field Name C0 C1 C2

Bits 31:12 of physical address 0... 0 1 = page present
1 = page not present

Table 3-30. Final Physical Address

31 12 11 2 1 0

Field Name D0 D1 D2

Bits 31:12 of C (field C0) Bits 11:2 of A (field A2) 00

Table 3-31. Linear Address

31 22 21 12 110

Field Name A0 A1 A2

Bits 31:22 of virtual address (these
bits are ignored) Bits 21:12 of virtual address Bits 11:0 of virtual address

Copyright 1996 – Cirrus Logic Inc. 3-39 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

For physical memory translation (bit 0 of the BASE_ADDRESS_XX register for that object is 0),
field A1 of the resulting virtual memory address [A] is added to field B0 (bits 31-12) of the
BASE_ADDRESS_XX register [B]. This scheme assumes an up to 4 Mbyte physically contiguous
locked down region is being used in system memory for the object. The Base Address B for the
system memory object is illustrated below.

The result C0 is concatenated to field A2 of the original virtual memory address to form the final
physical address. The final physical address, corresponding to the original XY address, is illus-
trated below. The final physical address is illustrated below.

3.4.3.4 3D Display List Memory

The display list memory object behaves exactly as described above. It uses 4400h, the
INSTRUCTION_PTR_3D register, as its equivalent to the BASE_ADDRESS_XX registers.

3.4.3.5 Z-Buffer and Color Map Buffers Mixed in System Memory

TBD

3.4.3.6 Texture Memory Format in System Memory

TBD

3.4.4 READ_3D_REGISTER — Multiple Commands View of System Memory

TBD

Table 3-32. Base Address

3112 11 2 1 0

Field Name B0 B1 B2

Bits 31:12 of system memory base
address (points to the starting
physical address for this object —
on 4-Kbyte boundary).

Base address physical range
(see BASE_ADDR_XX)

0 = Physical
1 = Virtual

Table 3-33. Final Physical Address

31 12 11 2 1 0

Field Name C0 C1 C2

Sum of fields A0 and field B0 Copied from field A2 00

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-40 Copyright 1996 – Cirrus Logic Inc.

3.5 CL-GD5464 3D Instruction Set

The CL-GD5434 3D engine is a stored-program computer with its own instruction set. This section
covers the instructions, including the formats and field definitions. In Section 3.5.3, each instruc-
tion is described in detail.

Many instructions have field definitions that are common. An example is the EVENT_MASK in bits
10:0 of TEST and WAIT instructions. These common fields are defined in Section 3.5.2 and then
referenced in the individual instruction definitions.

3.5.1 Instruction Summary

Each instruction on the CL-GD5464 is precisely 32-bits long and must reside in system memory
on a DWORD boundary. Instructions are often followed by a list of parameters. For example,
DRAW_POINT is followed by parameters that define the location of the point in display memory
space (X, Y, Z) and color space (R, G, B).

Instructions can be loaded into the CL-GD5464 by the host (see Section 3.2.1 and Section 3.2.2),
but are more often fetched by the CL-GD5464 itself using the bus master capabilities of the PCI
host interface (display list programming). In the cases where it makes a difference in the descrip-
tion, this section assumes display list programming.

3.5.1.1 Drawing Instructions

There are three drawing instructions. The format of the drawing instructions is shown in
Table 3-34.

The opcodes for the drawing instructions are summarized in Table 3-35.

Table 3-34. Drawing Instruction Format Summary

Field Bits Description

OP_CODE 31:27 Specifies instruction

STALL 26 Stall control for all opcodes

INSTR_MODIFIER 25:12 Controls details of instruction execution (seeTable 3-41)

ADDR 11:6 Destination register for first parameter, usually ‘0’

COUNT 5:0 Number of parameter words following the instruction word (0 to 63)

Table 3-35. Drawing Instruction Opcodes

Instruction Opcode (Binary)
Hex Value

(32-bit Template)

DRAW_POINT 00000 0000 0000h

DRAW_LINE 00001 0800 0000h

DRAW_POLY 00010 1000 0000h

Copyright 1996 – Cirrus Logic Inc. 3-41 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

The number and order of parameters used by the drawing instruction varies according to the
instruction and the modifier bits. Typically, DRAW_POINT uses fewer parameters than
DRAW_LINE, which uses fewer parameters than DRAW_POLY. The description of each DRAW
instruction includes a table specifying the order of the parameters, and the parameter(s) that are
skipped based on the modifier bits.

The ADDR field specifies the register that the first parameter is to be loaded into. Since the first
parameter is nearly always X_3D, this field is nearly always programmed to ‘0’. The COUNT field
specifies the number of parameters. This can be as few as three for a DRAW_POINT to over 30
for a DRAW_POLY.

3.5.1.2 Transfer Instructions

There are four instruction used to transfer control within a display list. The format of the transfer
instructions is shown in Table 3-36.

The opcodes for the transfer instructions are summarized in Table 3-37.

These four instructions conditionally or unconditionally transfer control within a display list. If the
3D engine is not in Display List mode, execution of any of these instructions puts it into Display
List mode.

The two conditional branch instructions test a single-condition bit, which must have been previ-
ously set or reset with a TEST instruction. The actual condition tested is specified in the TEST
instruction.

The CALL instruction stores the offset of the next instruction so that it can be restored with a
RETURN instruction. The CL-GD5464 supports a single level of subroutine. If a CALL is executed
inside a subroutine, the original return address is lost.

Table 3-36. Transfer Instruction Format Summary

Field Bits Description

OP_CODE 31:27 Specifies instruction

STALL 26 Stall control for all opcodes

(Reserved) 25:22 Must be zero

OFFSET_ADDR 21:2 Destination address

(Reserved) 1:0 Must be zero

Table 3-37. Transfer Instruction Opcodes

Instruction Opcode (binary)
Hex Value

(32-bit Template)
Note

BRANCH 00111 3800 0000h Unconditional

C_BRANCH 01000 4000 0000h Transfer if condition true

NC_BRANCH 01001 4800 0000h Transfer if condition false

CALL 01010 5000 0000h Unconditional, store return

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-42 Copyright 1996 – Cirrus Logic Inc.

The OFFSET field is added to the PF_BASE_ADDR_3D register to obtain the target address.
Instructions are always on DWORD boundaries; the least-significant two bits of the
OFFSET_ADDR and PF_BASE_ADDR_3D must always be ‘0’.

3.5.1.3 Control Instructions

There are nine control instructions with various formats. The formats are shown in Table 3-38
through Table 3-40.

The purpose of the TEST instruction is to set or reset the condition flag for a subsequent condition
branch instruction. The purpose of the WAIT instruction is to wait for an event or combination of
events to be true or false before continuing the instruction stream. The WAIT instruction does not
change the condition flag.

The AND_OR bit and NOT bit control how conditions are combined. The details are included in
the instruction descriptions.

The EVENT_MASK consists of individual bits for a number of events or conditions. They are enu-
merated in Table 3-42. Since there is a bit for each event or condition, multiple events, or condi-
tions can be combined in a single TEST or WAIT instruction. The AND_OR and NOT bits control
how they are combined.

Table 3-38. TEST/WAIT Instruction Format Summary

Field Bits Description

OP_CODE 31:27 Specifies instruction

STALL 26 Stall control for all opcodes

AND_OR 25 Controls how tests are combined

NOT 24 Inverts the sense of the test

(Reserved) 23:11 Must be zero

EVENT_MASK 10:0 Conditions are individually enabled

Table 3-39. CONTROL ‘I’ Instruction Format Summary

Field Bits Description Note

OP_CODE 31:27 Specifies instruction

STALL 26 Stall control for all opcodes

SUB_OPCODE 25:22 Specifies one of 16 operations Six are used

(Reserved) 21:0 Must be zero

Copyright 1996 – Cirrus Logic Inc. 3-43 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

Six CONTROL ‘I’ instructions are available. They are distinguished by a four-bit SUB_OPCODE,
summarized in Table 3-40.

3.5.1.4 Read/Write Register Instructions

There are five instructions used to read or write registers in the CL-GD5464. These each have a
different format; the formats of these instructions are given in the respective instruction descrip-
tions.

READ_DEV_REGS can be used to read an arbitrary register from any unit in the CL-GD5464.
The reg is ter contents are s tored in system memory at the of fset spec ified in
PF_DEST_ADDR_3D. On the CL-GD5464, READ_DEV_REGS is limited to a single register for
each instruction.

The register to be read is specified in two fields. The MODULE_SELECT field indicates the inter-
nal module containing the register (see Table 3-43). The ADDR field specifies, within the module,
the register to be read.

WRITE_DEV_REGS is the analog of READ_DEV_REGS to write an arbitrary register. The
parameter(s) to be written follows the instruction in the display list. On the CL-GD5464,
WRITE_DEV_REGS is limited to a single register unless 2D Engine registers 480h through 4FCh
are the target.

The register to be written is specified in two fields. The MODULE_SELECT field indicates the
internal module containing the register (see Table 3-43). The ADDR field specifies, within the
module, the register to be written.

WRITE_REGISTER is used to write a contiguous set of the CL-GD5464 3D registers. The instruc-
tion contains two fields that select the first register that is to be written and a count specifying the
number of registers to be written. The parameters that are to be written follow the instruction in
the display list. This instruction can also be used in Coprocessor Direct mode.

WRITE_DEST_ADDR is used to write an offset to the PF_DEST_ADDR_3D register. This offset
is subsequently used by READ_DEV_REGS.

Table 3-40. CONTROL ‘I’ Instructions

Instruction SUB_OPCODE
32-bit

Instruction
Function

IDLE 0000b 6800 0000h Idle prefetch unit (return to Coprocessor mode).

IDLE_INT 0001b 6840 0000h Idle prefetch unit (return to Coprocessor mode) and set host
interrupt request.

NOP 0010 6880 0000h No operation. Can be used with STALL bit to provide draw
engine and prefetch engine stall.

RETURN 0011b 68C0 0000h Return from subroutine. Transfers control to the instruction
following the last CALL.

RETURN_INT 0100b 6900 0000h Return from interrupt subroutine.

CLEAR 1011b 6AC0 0000h Clear Execution Engine registers (4000h to 40FCh) to zero.

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-44 Copyright 1996 – Cirrus Logic Inc.

WRITE_PFCTRL_REG is used to write directly to the PF_CTL_3D register at 4404h or the
PF_FB_SEG_3D register at 440Ch.

3.5.2 Instruction Field Tables

This section defines the common fields in the instructions. These descriptions are in no particular
order. They are referenced in the descriptions of the individual instructions that use them.

3.5.2.1 STALL

The STALL bit is in all the CL-GD5464 instructions. It is always bit 26. If the STALL bit is set, all
DRAW instructions that have been issued are completed before beginning the current instruction
(the one with the STALL bit set).

3.5.2.2 Drawing Instruction INSTR_MODIFIER Field

These bits are used in conjunction with the parameters to define just how the drawing instruction
is to be executed. Many of these bits can be used in combination to obtain the desired effect. See
the sample programs.

Table 3-41. Drawing Instructions INSTR_MODIFIER Field

INSTR_MODIFIER Bits Description

MODIFIER_EXP 25 Next word contains additional modifiers (for further expansion). This bit must be
‘0’ on the CL-GD5464.

INITIAL_WIDTH 24 Initial triangle span widths required (for Area 1 and Area 2). Allows drawing poly-
gons that have an initial width that is non-zero.

FETCH_COLOR 23
Fetch existing color buffer pixels. Turn destination read on. This is used for color
range compare and mask as well as alpha blending when the blending co-effi-
cient is stored with the data in the frame buffer.

ALPHA_LOAD 22 Load alpha registers A_3D, DA_MAIN_3D and DA_ORTHO_3D. Used for fog or
light gradient write.

DITHER 21 Dither polygon using PATTERN_RAM as dither pattern. This improves color qual-
ity during lighting and non-3D shading process.

PATTERN 20 Pattern polygon using PATTERN_RAM

STIPPLE 19 Stipple polygon for transparency using PATTERN_RAM

LIGHTING 18 Global enable for lighting

TEXTURE_MODE 17:16

00: Texture mapping off
01: Reserved
10: Linear texture mapping
11: Perspective-corrected texture mapping

RESERVED 15:14 Reserved for expansion

Z_ON 13 Z depth function on: 3D operation

GOURAUD 12 Interpolate colors. The delta color parameters are used to obtain color gradients.
Must be ‘0’ for DRAW_POINT.

Copyright 1996 – Cirrus Logic Inc. 3-45 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.2.3 TEST/WAIT Instruction EVENT_MASK

This field is individual bits rather than encoded values. This allows multiple conditions to be tested
in a single instruction.

Table 3-42. TEST/WAIT Instruction EVENT_MASK

Bit Hex Value Event Name Description Reset By:

10 0x400 DISPLAY_LIST_SWITCH Set by system software to indicate that
display can be switched to a new buffer Software

9 0x200 COMMAND_FIFO_NOT_EMPTY 2D/3D command FIFO is not empty BLT engine

8 0x100 BLT_ENGINE_BUSY Neither BLT_BUSY nor BLT_READY
are true BLT engine

7 0x080 HOSTXY_UNIT_BUSY HostXY unit is busy XY unit

6 0x040 EXECUTION_ENGINE_BUSY Execution engine is busy Execution
engine

5 0x020 POLY_ENGINE_BUSY 3D engine is busy Po lygon
engine

4 0x010 Z_BUFFER_COMPARE Z-compare produces true result

3 0x008 CRT_DISPLAY_BUFFER_SWITC
H

CRT Controller switches banks; used
for double buffer of display screen

Next CRT
VSYNC

2 0x004 CRT_LINE_COMPARE CRT ver t i ca l coun te r equa ls
LINE_COMPARE

Next CRT
VSYNC

1 0x002 CRT_EVSYNC CRT ver t ical counter equals CRT
VSYNC END

Next CRT
VSYNC

0 0x001 CRT_VSYNC CRT ver t ical counter equals CRT
VSYNC START

Next CRT
VSYNC

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-46 Copyright 1996 – Cirrus Logic Inc.

3.5.2.4 READ/WRITE_DEV_REGS Instruction MODULE_SELECT

This field specifies the internal module for the READ_DEV_REGS and WRITE_DEV_REGS
instructions.

Table 3-43. READ/WRITE_DEV_REGS Instruction MODULE_SELECT

Module Value Description

VGAMEM 00 000b VGA register set (I/O, palette, video CRT, cursor)

VGAFB 00 001b VGA frame buffer memory (A0000h–BFFFFh)

VPORT 00 010b VPORT Control registers

LPB 00 011b Local peripheral bus (general-purpose I/O)

MISC 00 100b Miscellaneous (Rambus and serial)

ENG2D 00 101b 2D engine registers

HD 00 110b 2D engine host data port

FB 00 111b Direct frame buffer memory

ROM 01 000b ROM memory (read-only)

ENG3D 01 001b 3D engine register set (offset 4000h–41FCh)

HOST_XY 01 010b 3D engine host XY register set (offset 4200–42FCh)

HDATA_3D 01 011h 3D (command) data port (offset 4800h–4BFCh)

Copyright 1996 – Cirrus Logic Inc. 3-47 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.2.5 DRAW Instructions Register Skip Controls

For each of the three DRAW instructions, a number of conditions can cause registers to be
skipped as the parameters are loaded. For example, if mapped color is being used, there is no
requirement to load the blue or green color parameters. Table 3-44 summarizes the conditions
and shows which parameters are skipped for each.

Table 3-44. Register Skip Conditions

Condition Description
Parameters

Skipped
Causes Condition

Mapped color
The CL-GD5464 is programmed for
CLUT mapped color. A single color
value is stored per pixel.

Greens, Blues CONTROL0_3D[2:0] = 000b

Shading
disabled Color is static Delta colors Instruction [12] = 0

Z-buffer off Z-buffer functions disabled Z, Delta Zs Instruction [13] = 0

No initial width Polygon has vertex at top WIDTH1,
WIDTH2 Instruction [24] = 0

Texture off No texture mapping U, V, DU, DV Instruction [17:16] = 0x

Perspective
texture off Linear texture mapping D2U, D2V,

D_ADD Instruction [17:16] = 10

ALPHA_LOAD
Off No alpha blending A, DA Instruction [22] = 0

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-48 Copyright 1996 – Cirrus Logic Inc.

3.5.3 Instruction Listings

The following sections describe the instructions in detail. The descriptions are ordered alphabeti-
cally.

Table 3-45. Instruction Descriptions

Instruction Section Page

BRANCH 3.5.3.1 page 49

CALL 3.5.3.2 page 50

C_BRANCH 3.5.3.3 page 51

CLEAR 3.5.3.4 page 52

DRAW_LINE 3.5.3.5 page 53

DRAW_POINT 3.5.3.6 page 55

DRAW_POLYGON 3.5.3.7 page 56

IDLE 3.5.3.8 page 59

IDLE_INT 3.5.3.9 page 60

INTERRUPT ENABLE CONTROL 3.5.3.10 page 61

NC_BRANCH 3.5.3.11 page 62

NOP 3.5.3.12 page 63

READ_DEV_REGS 3.5.3.13 page 64

RETURN 3.5.3.14 page 65

RETURN_INT 3.5.3.15 page 66

TEST 3.5.3.16 page 67

WAIT 3.5.3.17 page 68

WRITE_DEST_ADDR 3.5.3.18 page 69

WRITE_DEV_REGS 3.5.3.19 page 70

WRITE_PFCTRL_REG 3.5.3.20 page 71

WRITE_REGISTER 3.5.3.21 page 72

Copyright 1996 – Cirrus Logic Inc. 3-49 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.1 BRANCH

The 3D engine transfers control within the display list. If it is not already in Display List mode, it
enters Display List mode.

Functional Description

The BRANCH instruction transfers control to the OFFSET_ADDR. This is an unconditional trans-
fer. No return address is saved. If the 3D engine is not already in Display List mode, execution of
this instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE_ADDR_3D to determine the virtual address in
system memory of the target instruction.

Table 3-46. BRANCH Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00111b –

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:22 0 –

OFFSET_ADDR 21:2 – –

(Reserved) 1:0 0 –

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-50 Copyright 1996 – Cirrus Logic Inc.

3.5.3.2 CALL

The 3D engine transfers control within the display list. If it is not already in Display List mode, it
enters Display List mode. The return address is saved.

Functional Description

The CALL instruction transfers control to the OFFSET_ADDR. This is an unconditional transfer.
The return address is saved. If the 3D engine is not already in Display List mode, execution of this
instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE-ADDR_3D to determine the virtual address in
system memory of the target instruction.

The CL-GD5464 stores a single return address. If a CALL is executed within a subroutine, the first
return address is overwritten.

Table 3-47. CALL Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01010b –

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:22 0 –

OFFSET_ADDR 21:2 – –

(Reserved) 1:0 0 –

Copyright 1996 – Cirrus Logic Inc. 3-51 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.3 C_BRANCH

The 3D engine conditionally transfers control within the display list. If it is not already in Display
List mode, it enters Display List mode.

Functional Description

The C_BRANCH instruction transfers control to the OFFSET_ADDR if the condition flag is TRUE.
No return address is saved. If the 3D engine is not already in Display List mode, execution of this
instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE-ADDR_3D to determine the virtual address in
system memory of the target instruction.

C_BRANCH is typically preceded with a TEST instruction that sets the condition flag to TRUE or
FALSE.

Table 3-48. C_BRANCH Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01000b –

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:22 0 –

OFFSET_ADDR 21:2 – –

(Reserved) 1:0 0 –

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-52 Copyright 1996 – Cirrus Logic Inc.

3.5.3.4 CLEAR

The 3D Engine Parameter registers are set to ‘0’.

Functional Description

The CLEAR instruction writes 0s to registers 0x4000 through 0x40FC.

Table 3-49. CLEAR Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01101b –

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 0101b –

(Reserved) 21:0 0 –

Copyright 1996 – Cirrus Logic Inc. 3-53 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.5 DRAW_LINE

This instruction draws a line as specified in the instruction modifiers and the parameter list.

Functional Description

The DRAW_LINE instruction fetches and loads parameters into 3D Engine registers as specified
in the COUNT field and the INSTR_MODIFIER field. It then draws a line.

The ADDR field specifies the first parameter to be loaded. This is essentially always programmed
to zero so that X_3D is the first parameter.

The COUNT field specifies the number of parameters that follow the instruction. This can vary
from six to over 20. Table 3-52 shows the order of the parameter and the ones that skipped if spec-
ified conditions are extant. The conditions are covered in Section 3.5.2.5.

Lines can be either X-major or Y-major (see Section 3.3.1). Table 3-51 summaries the registers
the two increments must be programmed into. For Y-major lines, the Y-increment must always be
positive (Y-major lines must be drawn from lower addresses to higher addresses, just as polygons
are always drawn from the top down).

Table 3-50. DRAW_LINE Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00001b –

STALL 26 0/1 Section 3.5.2.1

INSTR_MODIFIER 25:12 – Section 3.5.2.2

ADDR 11:6 (0) –

COUNT 5:0 – –

Table 3-51. Increments for DRAW_LINE

Line X-Increment Y-Increment

X-Major DX_MAIN_3D: 0x4014 ± 1.0 DWIDTH2-3D: 0x4028 (signed value)

Y-Major DX_MAIN_3D: 0x4014 (signed value) DWIDTH2_3D: 0x4028 + 1.0

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-54 Copyright 1996 – Cirrus Logic Inc.

Table 3-52. DRAW_LINE Parameter Order

Addr Name
Mapped

Color
Shading
Disabled

Z_ON
Off

Texture
Mapping

Off

Perspective
Mapping

Off

ALPHA_
LOAD

Off

Main Drawing Parameters

0x4000 X_3D

0x4004 Y_3D

0x4008 R_3D

0x400C G_3D Skip

0x4010 B_3D Skip

0x4014 DX_MAIN_3D

0x4018 Y_COUNT_3D

0x401C WIDTH1_3D

0x402C DR_MAIN_3D Skip

0x4030 DG_MAIN_3D Skip

0x4034 DB_MAIN_3D Skip

0x4044 Z_3D Skip

0x4048 DZ_MAIN_3D Skip

Texture Map Parameters

0x4050 V_3D Skip

0x4054 U_3D Skip

0x4058 DV_MAIN_3D Skip

0x405C DU_MAIN_3D Skip

0x4068 D2V_MAIN_3D Skip Skip

0x406C D2U_MAIN_3D Skip Skip

Alpha Blending Parameters

0x40C0 A_3D Skip

0x40C4 DA_MAIN_3D Skip

Copyright 1996 – Cirrus Logic Inc. 3-55 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.6 DRAW_POINT

This instruction draws a point as specified in the instruction modifiers and the parameter list.

Functional Description

The DRAW_POINT instruction fetches and loads parameters into 3D Engine registers as speci-
fied in the COUNT field and the INSTR_MODIFIER field. It then draws a single point.

The ADDR field specifies the first parameter to be loaded. This is essentially always programmed
to zero so that X_3D is the first parameter.

The COUNT field specifies the number of parameters that follow the instruction. This can vary
from three to eight. Table 3-54 shows the order of the parameter and the ones that are skipped if
specified conditions are extant. The conditions are covered in Section 3.5.2.5.

Table 3-53. DRAW_LINE Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00000b –

STALL 26 0/1 Section 3.5.2.1

INSTR_MODIFIER 25:12 – Section 3.5.2.2

ADDR 11:6 (0) –

COUNT 5:0 – –

Table 3-54. DRAW_POINT Parameter Order

Addr Name
Mapped

Color
Z_ON

Off
Texture

Mapping Off
ALPHA_
LOAD Off

Main Drawing Parameters

0x4000 X_3D

0x4004 Y_3D

0x4008 R_3D

0x400C G_3D Skip

0x4010 B_3D Skip

0x4044 Z_3D Skip

Texture Map Parameters

0x4050 V_3D Skip

0x4054 U_3D Skip

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-56 Copyright 1996 – Cirrus Logic Inc.

3.5.3.7 DRAW_POLYGON

This instruction draws a polygon as specified in the instruction modifiers and the parameter list.

Functional Description

The DRAW_POLYGON instruction fetches and loads parameters into 3D Engine registers as
specified in the COUNT field and the INSTR_MODIFIER field. It then draws a polygon.

The 3D engine interpolates the position of pixels unto an X, Y, Z grid located in either local memory
or system memory. See Section 3.3. The interpolated positions and transparencies are dependent
on the X, Y, and Z parameters supplied to the 3D engine for each polygon. Colors are also applied
during this interpolation process from multiple sources:

● From the color ramp interpolators for Gouraud shading

● From constant values located in the color registers

● From texture maps located in local or system memory

As the color sources are applied to the 3D engine, operators are applied to control the lighting,
fogging, and blending. Texture mapping operators are also applied to filter, blend, copy, and ‘decal’
texels as the traverse the CL-GD5464 3D engine data path.

The ADDR field specifies which is the first parameter to be loaded. This is essentially always pro-
grammed to zero so that X_3D is the first parameter.

The COUNT field specifies the number of parameters that follow the instruction. This can vary
from seven to over 30. Table 3-56 shows the order of the parameter and the ones that are skipped
if specified conditions are extant. The conditions are covered in Section 3.5.2.5.

Table 3-55. DRAW_LINE Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00010b –

STALL 26 0/1 Section 3.5.2.1

INSTR_MODIFIER 25:12 – Section 3.5.2.2

ADDR 11:6 (0) –

COUNT 5:0 – –

Table 3-56. DRAW_POLYGON Parameter Order

Address Name
Mapped

Color
Shading
Disabled

Z_ON
Off

Initial
Width

Off

Texture
Off

Perspective
Off

ALPHA_
LOAD

Off

Main Drawing Parameter

0x4000 X_3D

0x4004 Y_3D

0x4008 R_3D

Copyright 1996 – Cirrus Logic Inc. 3-57 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

0x400C G_3D Skip

0x4010 B_3D Skip

0x4014 DX_MAIN_3D

0x4018 Y_COUNT_3D

0x401C WIDTH1_3D Skip

0x4020 WIDTH2_3D Skip

0x4024 DWIDTH1_3D

0x4028 DWIDTH2_3D

0x402C DR_MAIN_3D Skip

0x4030 DG_MAIN_3D Skip Skip

0x4034 DB_MAIN_3D Skip Skip

0x4038 DR_ORTHO_3D Skip

0x403C DG_ORTHO_3D Skip

0x4040 DB-ORTHO_3D Skip

0x4044 Z_3D Skip

0x4048 DZ_MAIN_3D Skip

0x404C DZ_ORTHO_3D Skip

Texture Map Parameter

0x4050 V_3D Skip

0x4054 U_3D Skip

0x4058 DV_MAIN_3D Skip

0x405C DU_MAIN_3D Skip

0x4060 DV_ORTHO_3D Skip

0x4064 DU_ORTHO_3D Skip

0x4068 D2V_MAIN_3D Skip Skip

0x406C D2U_MAIN_3D Skip Skip

0x4070 D2V_ORTHO_
3D Skip Skip

0x4074 D2U_ORTHO_
3D Skip Skip

Table 3-56. DRAW_POLYGON Parameter Order (cont.)

Address Name
Mapped

Color
Shading
Disabled

Z_ON
Off

Initial
Width

Off

Texture
Off

Perspective
Off

ALPHA_
LOAD

Off

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-58 Copyright 1996 – Cirrus Logic Inc.

0x4078 DV_ORTHO_
ADD_3D Skip Skip

0x407C DU_ORTHO_
ADD_3D Skip Skip

Alpha Blending Parameters

0x40C0 A_3D Skip

0x40C4 DA_MAIN_3D Skip

0x4048 DA_ORTHO_3D Skip

Table 3-56. DRAW_POLYGON Parameter Order (cont.)

Address Name
Mapped

Color
Shading
Disabled

Z_ON
Off

Initial
Width

Off

Texture
Off

Perspective
Off

ALPHA_
LOAD

Off

Copyright 1996 – Cirrus Logic Inc. 3-59 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.8 IDLE

The 3D engine enters the Idle state (Coprocessor mode).

Functional Description

The IDLE instruction places the CL-GD5464 into the idle state. It no longer processes the display
list. A BRANCH, C_BRANCH, NC_BRANCH, or CALL can be used to re-initiate display list pro-
cessing.

In the Idle state, all internal registers are exposed for direct control by the host.

Table 3-57. IDLE Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01101b –

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 0000b –

(Reserved) 21:0 0 –

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-60 Copyright 1996 – Cirrus Logic Inc.

3.5.3.9 IDLE_INT

The 3D engine enters the idle state (Coprocessor mode) and generates an interrupt to the host (if
enabled).

Functional Description

When executed in Display List mode, the IDLE_INT instruction ceases display list processing and
generates an interrupt on INTA#. RETURN_INT can be used to resume display list processing.

IDLE_INT is typically used to signal the end of a display list, or that the engine has reached a point
where guidance from the host is required.

Table 3-58. IDLE_INT Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01101b –

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 0001b –

(Reserved) 21:0 0 –

Copyright 1996 – Cirrus Logic Inc. 3-61 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.10 Interrupt Enable Control

Interrupt enable bits are set or cleared according the SET_CLR field and the INT_MASK field.

Functional Description

The INTERRUPT instruction either sets or clears flip-flops that enable events to set bits in the
PF_STATUS_3D register. The flip-flops are chosen according to the SET_CLR field and the
INT_MASK field.

The SET_CLR field controls whether bits are to be set to ‘1’ or cleared to ‘0’.

The INT_MASK field controls which interrupt enables are to be set or cleared. Since this field is
bit-sensitive (rather than encoded), multiple bits can be set or cleared at once.

Table 3-59. IDLE_INT Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01111b –

STALL 26 0/1 Section 3.5.2.1

SET_CLR 25 0/1 0 = Clear,
1 = Set

(Reserved) 24:5 0 –

INT_MASK 4:0 - Table 3-60

Table 3-60. INTERRUPT Instruction INT_MASK Field

INT_MASK Interrupt Name PF_STATUS_3D Reset By

1 0000b Z_COLLISION Bit 4 Read of STATUS_3D (0x413C)

0 1000b DISPLAY_BUFFER_SWITCH Bit 3 Next CRT VSYNC

0 0100b CRT_LINE_COMPARE Bit 2 Next CRT VSYNC

0 0010b CRT_EVSYNC Bit 1 Next CRT VSYNC

0 0001b CRT_VSYNC Bit 0 Next CRT VSYNC

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-62 Copyright 1996 – Cirrus Logic Inc.

3.5.3.11 NC_BRANCH

The 3D engine conditionally transfers control within the display list. If it is not already in Display
List mode, it enters Display List mode.

Functional Description

The NC_BRANCH instruction transfers control to the OFFSET_ADDR if the condition flag is
FALSE. No return address is saved. If the 3D engine is not already in Display List mode, execution
of this instruction causes it to enter Display List mode.

The OFFSET_ADDR field is added to PF_BASE-ADDR_3D to determine the virtual address in
system memory of the next instruction.

NC_BRANCH is typically preceded with a TEST instruction that sets the condition flag to TRUE
or FALSE.

Table 3-61. NC_BRANCH Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01001b –

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:22 0 –

OFFSET_ADDR 21:2 – –

(Reserved) 1:0 0 –

Copyright 1996 – Cirrus Logic Inc. 3-63 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.12 NOP

The 3D engine advances the instruction address pointer.

Functional Description

The IDLE instruction does nothing except to advance the instruction pointer and possibly execute
a STALL. This can be used to ensure the 3D engine has finished drawing and the pre-fetch pipe-
line is clear.

Table 3-62. NOP Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01101b –

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 0010b –

(Reserved) 21:0 0 –

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-64 Copyright 1996 – Cirrus Logic Inc.

3.5.3.13 READ_DEV_REGS

The indicated register is read. The results are stored in system memory at the address specified
in PF_DEST_ADDR_3D.

Functional Description

The READ_DEV_REGS instruction fetches the contents of the specified register and places the
contents into the locat ion in system memory specified in PF_DEST_ADDR_3D.
PF_DEST_ADDR_3D is loaded with the execution of a WRITE_DEST_ADDR instruction.

This instruction is used to write the CL-GD5464 status to system memory while processing a dis-
play list. This instruction waits for the 3D engine to be idle before it is executed. This allows the
instruction stream processing to communicate its status to the system software, thus providing a
means of synchronization between 3D operations and 2D operations.

The MODULE_SELECT field indicates which module in the CL-GD5464 contains the register to
be read. This field in defined in Table 3-43.

The ADDR field indicates the register within the module is to be read.

COUNT must be programmed to ‘1’.

Table 3-63. READ_DEV_REGS Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00110b –

STALL 26 0/1 Section 3.5.2.1

MODULE_SELECT 25:21 – Table 3-43

(Reserved) 20:17 0 –

ADDR 16:6 – –

COUNT 5:0 1 –

Copyright 1996 – Cirrus Logic Inc. 3-65 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.14 RETURN

The 3D engine returns from a subroutine.

Functional Description

The RETURN instruction restores the state information saved by a CALL instruction and resumes
instruction stream processing at the instruction following the CALL.

The CL-GD5464 supports only a single-level subroutine.

Table 3-64. RETURN Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01101b –

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 0011b –

(Reserved) 21:0 0 –

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-66 Copyright 1996 – Cirrus Logic Inc.

3.5.3.15 RETURN_INT

The 3D engine restores the state information saved by an INT and resumes display list processing
at the location following the INT.

Functional Description

The RETURN_INT instruction restores the instruction state saved by an INT and resumes display
list processing.

Table 3-66 summarizes the control bits in 21:19.

Table 3-65. RETURN_INT Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01101b –

STALL 26 0/1 Section 3.5.2.1

SUB_OPCODE 25:22 0100b –

EI 21 0/1 –

DA 20 0/1 –

CF 19 0/1 –

(Reserved) 18:0 0 –

Table 3-66. State Information Restoration Control for RETURN_INT

RETURN_INT Field Field Specific Field(s) Effected

EI (bit 21) Interrupt enables

DA (bit 20) Destination address

CF (bit 19) Condition flag

Copyright 1996 – Cirrus Logic Inc. 3-67 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.16 TEST

The 3D engine tests one or more events and sets the condition flag based on the outcome.

Functional Description

The TEST instruction tests one or more events as specified in the EVENT_MASK and sets or
resets the condition flag based on the outcome.

The AND_OR bit and NOT bit control how the events are combined. This is summarized in
Table 3-68.

Table 3-67. TEST Instruction Format

Field Bits Value Reference

OP_CODE 31:27 10000 –

STALL 26 0/1 Section 3.5.2.1

AND_OR 25 0/1 –

NOT 24 0/1 –

(Reserved) 23:11 0 –

EVENT_MASK 10:0 - Table 3-42

Table 3-68. TEST Instruction Control Bits

AND_OR NOT
Number of ‘1’ bits
in EVENT_MASK

Instruction Name C-Flag is set if

X 0 1 TEST Single event is TRUE

1 0 2 or more TEST_AND All events are TRUE

0 0 2 or more TEST_OR Any event is TRUE

X 1 1 NTEST Single event is FALSE

1 1 2 or more NTEST_AND All events are FALSE

0 1 2 or more NTEST_OR Any event is FALSE

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-68 Copyright 1996 – Cirrus Logic Inc.

3.5.3.17 WAIT

The 3D engine tests one or more events and waits before continuing with the display list.

Functional Description

The WAIT instruction tests one or more events as specified in the EVENT_MASK and waits before
continuing with the display list. The WAIT instruction does not change the condition flag.

The AND_OR bit and NOT bit control how the events are combined. This is summarized in
Table 3-70.

Table 3-69. WAIT Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01110b –

STALL 26 0/1 Section 3.5.2.1

AND_OR 25 0/1 –

NOT 24 0/1 –

(Reserved) 23:11 0 –

EVENT_MASK 10:0 – Table 3-42

Table 3-70. WAIT Instruction Control Bits

AND_OR NOT
Number of ‘1’ bits
in EVENT_MASK

Instruction Name Waits for

X 0 1 TEST Single event to be TRUE

1 0 2 or more TEST_AND All events to be TRUE

0 0 2 or more TEST_OR Any event to be TRUE

X 1 1 NTEST Single event to be FALSE

1 1 2 or more NTEST_AND All events to be FALSE

0 1 2 or more NTEST_OR Any event to be FALSE

Copyright 1996 – Cirrus Logic Inc. 3-69 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.18 WRITE_DEST_ADDR

The 3D engine writes the OFFSET_ADDR value to PF_DEST_ADDR_3D.

Functional Description

The WRITE_REGISTER instruction transfers the OFFSET_ADDR field to PF_DEST_ADDR_3D.
Bit 0 of the instruction is transferred to bit 0 (the INCREMENT bit) of PF_DEST_ADDR_3D. The
PF_DEST_ADDR_3D register specifies the offset for READ_DEV_REG.

Table 3-71. WRITE_DEST_ADDR Instruction Format

Field Bits Value Reference

OP_CODE 31:27 01011b –

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:22 0 –

OFFSET_ADDR 21:2 – –

(Reserved) 1 0 –

INCREMENT 0 0/1 –

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-70 Copyright 1996 – Cirrus Logic Inc.

3.5.3.19 WRITE_DEV_REGS

The indicated registers are written with words following the instruction word.

Functional Description

The WRITE_DEV_REGS instruction fetches the word(s) following the instruction and writes them
into the indicated register(s).

This instruction waits for the 3D engine to be idle before it is executed. This allows the instruction
stream processing to communicate its status to the system software, thus providing a means of
synchronization between 3D operations and 2D operations.

The MODULE_SELECT field indicates the module in the CL-GD5464 containing the register to
be written. This field in defined in Table 3-43.

The BYTE_ENABLES field indicates which bytes are to be written. Bit 20 corresponds to the most-
significant byte; bit 17 corresponds to the least-significant byte. Typically, this field is all ‘1’s except
for some single-register operations.

The ADDR field indicates the first (or only) register within the module to be written.

The COUNT field indicates the number of registers to be written.

The WRITE_DEV_REGS is used to access other devices with the CL-GD5464 while processing
a display list. For example, this allows texture map palettes to be loaded into the TLUT after a tex-
ture-mapped polygon is completed.

Table 3-72. WRITE_DEV_REGS Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00101b –

STALL 26 0/1 Section 3.5.2.1

MODULE_SELECT 25:21 – Table 3-43

BYTE_ENABLES 20:17 0 –

ADDR 16:6 – –

COUNT 5:0 1 –

Copyright 1996 – Cirrus Logic Inc. 3-71 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.5.3.20 WRITE_PFCTRL_REG

The 3D engine writes the PF_CTL_DATA field to either the PF_CTL_3D register or the
PF_FB_SEL_3D register.

Functional Description

The WRITE_PFCTRL_REG instruction transfers the PF_CTL_DATA field to the least-significant
16 bits of either PF_CTL_3D or PF_FB_SEG_3D.

The PF_CTL_3D register is not otherwise accessible from display list processing. Care must be
exercised if this register is changed during engine execution. Place a NOP with STALL (that waits
until the engine is idle) immediately in front of this instruction in the display list.

RSEL specifies which of the two object registers is to be loaded, as shown in Table 3-74.

Table 3-73. WRITE_PFCTRL_REG Instruction Format

Field Bits Value Reference

OP_CODE 31:27 10001b –

STALL 26 0/1 Section 3.5.2.1

RSEL 25 0/1 –

(Reserved) 24:16 0 –

PF_CTL_DATA 15:0 – –

Table 3-74. WRITE_PFCTRL_REG Instruction RSEL Field

RSEL
Destination

Register
Address Bits Used

0 PF_CRL_3D 0x4404 15:0

1 PF_FB_SEG_3D 0x440C 10:0

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-72 Copyright 1996 – Cirrus Logic Inc.

3.5.3.21 WRITE_REGISTER

The 3D engine writes one or more contiguous registers. This instruction can be used in coproces-
sor mode as well as Display List mode.

Functional Description

The WRITE_REGISTER instruction transfers the next COUNT DWORDs in the display to 3D reg-
isters beginning with the register specified in the C field and ADDR field. This instruction can take
advantage of the PCI burst write sequence.

If the COUNT field is ‘0’, no registers are written.

The C bit indicates whether the ADDR field is an offset from 0x4000h or 0x4100. See Table 3-76.

Table 3-75. WRITE_REGISTER Instruction Format

Field Bits Value Reference

OP_CODE 31:27 00011b –

STALL 26 0/1 Section 3.5.2.1

(Reserved) 25:13 0 –

C 12 0/1 –

ADDR 11:6 – –

COUNT 5:0 – –

Table 3-76. WRITE_REGISTER Instruction C Bit

C (Bit 12)
Base

Address
Registers

0 0x4000 Drawing

1 0x4100 Control

Copyright 1996 – Cirrus Logic Inc. 3-73 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.6 3D Register Header Files

The following four header files are used by the programming examples for the CL-GD5464.
Included are register definitions, instruction opcodes, structure definitions, and other generally
useful information. The # defines that could be used as a basic for programming the CL-GD5464.
The files ‘l3types.h’ and ‘modemon.h’ are support header files, included for completeness.

3.6.1 trm.h

/***

*

* Module: trm.h

*

* Revision: 1.00

*

* Date: August 30, 1996

*

* Author: Cirrus Logic Austin Design Center

*

**

*

* Module Description:

*

* Register, instruction, instruction modifiers and other

* defines used by this library

*

**

*

* Changes:

*

* DATE REVISION DESCRIPTION AUTHOR

* -------- -------- --

**/

#ifndef _TRM_H_

#define _TRM_H_

#include <string.h> // memset()

#include "l3types.h" // DWORD, etc

#include "l3struct.h" // LL_Texture, etc

// Set a register to a given value

//

#define SETREG(reg, value) \

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-74 Copyright 1996 – Cirrus Logic Inc.

 (*(DWORD *)(LL_State.pRegs + reg) = (DWORD) value)

// Clear a range of registers

//

#define CLEAR_RANGE(StartReg, EndReg) \

 memset((void *)(LL_State.pRegs + (StartReg)), 0, ((EndReg) - (StartReg)+1))

// Laguna 3D instruction set

#define DRAW_POINT 0x00000000

#define DRAW_LINE 0x08000000

#define DRAW_POLY 0x10000000

#define WRITE_REGISTER 0x18000000

#define READ_REGISTER 0x20000000

#define WRITE_DEV_REGS 0x28000000

#define READ_DEV_REGS 0x30000000

#define BRANCH 0x38000000

#define C_BRANCH 0x40000000

#define NC_BRANCH 0x48000000

#define CALL 0x50000000

#define WRITE_DEST_ADDR 0x58000000

#define INSTR_EXT 0x68000000

#define WAIT 0x72000000

#define WAIT_AND 0x72000000

#define NWAIT_AND 0x73000000

#define WAIT_OR 0x70000000

#define NWAIT_OR 0x71000000

#define CLEAR_INT 0x78000000

#define SET_INT 0x7A000000

#define TEST 0x80000000

#define TEST_AND 0x82000000

#define NTEST_AND 0x83000000

#define TEST_OR 0x80000000

#define NTEST_OR 0x81000000

#define WRITE_PREFETCH_CONTROL 0x88000000

// instruction modifier set for drawing instructions

#define STALL 0x04000000

#define GOURAUD 0x00001000

#define Z_ON 0x00002000

#define COLOR_OFF 0x00008000

Copyright 1996 – Cirrus Logic Inc. 3-75 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

#define TEXTURE_LINEAR 0x00020000

#define TEXTURE_PERSPECTIVE 0x00030000

#define LIGHTING 0x00040000

#define STIPPLE 0x00080000

#define PATTERN 0x00100000

#define DITHER 0x00200000

#define ALPHA 0x00400000

#define FETCH_COLOR 0x00800000

#define WARP_MODE 0x01000000

#define MODIFIER_EXPANSION 0x02000000

// instruction extension opcodes

#define IDLE 0x00000000

#define IDLE_INT 0x00400000

#define NOP 0x00800000

#define RETURN 0x00c00000

#define INT_RETURN 0x01000000

#define CLEAR 0x01400000

// core 3D registers - non byte-swapping apperture beginning at 0x4000

#define X_3D 0x4000

#define Y_3D 0x4004

#define R_3D 0x4008

#define G_3D 0x400c

#define B_3D 0x4010

#define DX_MAIN_3D 0x4014

#define Y_COUNT_3D 0x4018

#define WIDTH1_3D 0x401c

#define WIDTH2_3D 0x4020

#define DWIDTH1_3D 0x4024

#define DWIDTH2_3D 0x4028

#define DR_MAIN_3D 0x402c

#define DG_MAIN_3D 0x4030

#define DB_MAIN_3D 0x4034

#define DR_ORTHO_3D 0x4038

#define DG_ORTHO_3D 0x403c

#define DB_ORTHO_3D 0x4040

#define Z_3D 0x4044

#define DZ_MAIN_3D 0x4048

#define DZ_ORTHO_3D 0x404c

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-76 Copyright 1996 – Cirrus Logic Inc.

#define V_3D 0x4050

#define U_3D 0x4054

#define DV_MAIN_3D 0x4058

#define DU_MAIN_3D 0x405c

#define DV_ORTHO_3D 0x4060

#define DU_ORTHO_3D 0x4064

#define D2V_MAIN_3D 0x4068

#define D2U_MAIN_3D 0x406c

#define D2V_ORTHO_3D 0x4070

#define D2U_ORTHO_3D 0x4074

#define DV_ORTHO_ADD_3D 0x4078

#define DU_ORTHO_ADD_3D 0x407c

#define A_3D 0x40C0

#define DA_MAIN_3D 0x40C4

#define DA_ORTHO_3D 0x40C8

#define OPCODE_3D 0x40fc

// 3D Control registers

#define CONTROL_MASK_3D 0x4100

#define CONTROL0_3D 0x4104

#define COLOR_MIN_BOUNDS_3D 0x4108

#define COLOR_MAX_BOUNDS_3D 0x410c

#define CONTROL1_3D 0x4110

#define BASE0_ADDR_3D 0x4114

#define BASE1_ADDR_3D 0x4118

#define TX_CTL0_3D 0x4120

#define TX_XYBASE_3D 0x4124

#define TX_CTL1_3D 0x4128

#define TX_CTL2_3D 0x412C

#define COLOR0_3D 0x4130

#define COLOR1_3D 0x4134

#define Z_COLLIDE_3D 0x4138

#define STATUS0_3D 0x413C

#define PATTERN_RAM_0_3D 0x4140

#define PATTERN_RAM_1_3D 0x4144

#define PATTERN_RAM_2_3D 0x4148

#define PATTERN_RAM_3_3D 0x414c

#define PATTERN_RAM_4_3D 0x4150

Copyright 1996 – Cirrus Logic Inc. 3-77 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

#define PATTERN_RAM_5_3D 0x4154

#define PATTERN_RAM_6_3D 0x4158

#define PATTERN_RAM_7_3D 0x415c

#define X_CLIP_3D 0x4160

#define Y_CLIP_3D 0x4164

#define TEX_SRAM_CTRL_3D 0x4168

// host_XY unit registers

#define HXY_BASE0_ADDRESS_PTR_3D 0x4200

#define HXY_BASE0_START_XY_3D 0x4204

#define HXY_BASE0_EXTENT_XY_3D 0x4208

#define HXY_BASE1_ADDRESS_PTR_3D 0x4210

#define HXY_BASE1_OFFSET0_3D 0x4214

#define HXY_BASE1_OFFSET1_3D 0x4218

#define HXY_BASE1_LENGTH_3D 0x421C

#define HXY_BASE2_ADDRESS_PTR_3D 0x4220

#define HXY_HOST_CTRL_3D 0x4240

#define MAILBOX0_3D 0x4260

#define MAILBOX1_3D 0x4264

#define MAILBOX2_3D 0x4268

#define MAILBOX3_3D 0x426C

// 3D prefetch unit registers

#define PF_BASE_ADDR_3D 0x4400

#define PF_CTRL_3D 0x4404

#define PF_FB_SEG_3D 0x440C

#define PF_DEST_ADDR_3D 0x4408

#define PF_INST_ADDR_3D 0x4420

#define PF_STATUS_3D 0x4424

#define HOST_MASTER_CTRL_3D 0x4440

#define PF_INST_3D 0x4480

//**

//

// Library initialization defines:

//

// The following are examples of various useful defines that pertain

// to Laguna 3d. They are not necessarily used in this programming

// example

//

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-78 Copyright 1996 – Cirrus Logic Inc.

//**

// Defines for pixel modes (Control0 register)

#define PIXEL_MODE_INDEXED 0

#define PIXEL_MODE_332 1

#define PIXEL_MODE_565 2

#define PIXEL_MODE_555 3

#define PIXEL_MODE_A888 4

#define PIXEL_MODE_Z888 5

// Z Compare modes

#define LL_Z_WRITE_GREATER_EQUAL 0x00000000 // True if new >= old

#define LL_Z_WRITE_GREATER 0x00000001 // True if new > old

#define LL_Z_WRITE_LESS_EQUAL 0x00000002 // True if new <= old

#define LL_Z_WRITE_LESS 0x00000003 // True if new < old

#define LL_Z_WRITE_NOT_EQUAL 0x00000004 // True if new <> old

#define LL_Z_WRITE_EQUAL 0x00000005 // True if new = old

// Functional Z modes

#define LL_Z_MODE_NORMAL 0x00000000 // Normal operation

#define LL_Z_MODE_MASK 0x00000001 // Z not written

#define LL_Z_MODE_ALWAYS 0x00000002 // Z, color always wrt

#define LL_Z_MODE_ONLY 0x00000003 // Color not written

#define LL_Z_MODE_HIT 0x00000004 // collision dtct only

// Color compare controls

#define LL_COLOR_SATURATE_ENABLE 0x00000040 // for indexed mode

#define LL_COLOR_SATURATE_DISABLE 0x00000000 // (default)

#define LL_COLOR_COMPARE_INCLUSIVE 0x00000400 // tc modes

#define LL_COLOR_COMPARE_EXCLUSIVE 0x00000000 // tc modes (default)

#define LL_COLOR_COMPARE_BLUE 0x00000200 // blue (default off)

#define LL_COLOR_COMPARE_GREEN 0x00000100 // green (default off)

#define LL_COLOR_COMPARE_RED 0x00000080 // red (default off)

//**

//

// Lighting source: Selects the value for the lighting multiplier

// - interpolated light from the polygon engine

Copyright 1996 – Cirrus Logic Inc. 3-79 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

// load lighting values as r,g,b components

// also LL_GOURAUD must be set in the flags

// this mode uses Polyengine color registers

// - interpolated light from the alpha interpolator

// load lighting values as alpha components

// this mode uses LA-interpolators

// - constant light from the COLOR1 register

//

//**

#define LL_LIGHTING_INTERP_RGB 0x00000000 // Using poly engine

#define LL_LIGHTING_INTERP_ALPHA 0x00000001 // Using LA interp.

#define LL_LIGHTING_CONST 0x00000002 // Constant light

//**

//

// Alpha mode: Magnitude of alpha blending will be taken from

// - constant alpha, use LL_SetConstantAlpha(src/new,dest/old)

// this mode uses LA-interpolators

// - interpolated, variable alpha from LA-interpolators

// this mode also uses LA-interpolators

// - alpha field from the frame buffer

//

//**

#define LL_ALPHA_CONST 0x00000000 // Constant alpha

#define LL_ALPHA_INTERP 0x00000002 // Using LA interp.

#define LL_ALPHA_FRAME 0x00000003 // Using frame values

//**

//

// Alpha destination: Selects where the second color input to the

// alpha multiplier comes from

// - color from the frame buffer ("normal" alpha blending)

// - constant color (also called fog) from COLOR0 register

// - interpolated, shaded color from the polygon engine (also fog)

// also LL_GOURAUD must be set in the flags

// this mode uses Polyengine color registers

//

// Fog: Use aliases LL_FOG_CONST and LL_FOG_INTERP to avoid fetching

// colors from the frame and to set the fog color.

//

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-80 Copyright 1996 – Cirrus Logic Inc.

//**/

#define LL_ALPHA_DEST_FRAME 0x00000000 // Using frame color

#define LL_ALPHA_DEST_CONST 0x00000001 // Constant color

#define LL_ALPHA_DEST_INTERP 0x00000002 // Using poly engine

/***

*

* Buffer identification numbers and Z stride info.

*

* Used with LL_InitBuffers()

*

**/

#define LL_ID_BUFFER_A 0 /* ID of the primary buffer */

#define LL_ID_BUFFER_B 1 /* ID of the secondary buffer */

#define LL_ID_BUFFER_Z 2 /* ID of the Z buffer in RDRAM */

// function prototypes internal to this library

int LL_Init();

int LL_InitBuffers();

int LL_Terminate();

LL_Wait();

void LL_print_state();

void LL_print_regs();

LL_SetDisplayBuffer(TBuffer *pBuf); // useful for debug

// display list programming examples

void dl_point_set0(DWORD *pdwNext); // points

void dl_point_set1(DWORD *pdwNext);

void dl_point_set2(DWORD *pdwNext);

void dl_line_set0(DWORD *pdwNext); // lines

void dl_line_set1(DWORD *pdwNext);

void dl_poly_set0(DWORD *pdwNext); // polys

void dl_poly_set1(DWORD *pdwNext);

void dl_poly_set2(DWORD *pdwNext);

void dl_poly_set3(DWORD *pdwNext);

void dl_poly_set3(DWORD *pdwNext);

Copyright 1996 – Cirrus Logic Inc. 3-81 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

// functions external to this library

extern DWORD AllocSystemMemory(DWORD dwSize);

extern void FreeSystemMemory(DWORD hHandle);

extern DWORD GetLinearAddress(DWORD hHandle);

extern DWORD GetPhysicalAddress(DWORD hHandle);

extern DWORD *GetRegisterApperture();

extern BYTE *GetLagunaApperture(int base);

extern int GetPrivateProfileString(char *, char *, char *, char *, int, char
*);

#endif // _TRM_H_

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-82 Copyright 1996 – Cirrus Logic Inc.

3.6.2 l3struct.h

/***

*

* Module: l3struct.h

*

* Revision: 1.00

*

* Date: August 30, 1996

*

* Author: Cirrus Logic Austin Design Center

*

**

*

* Module Description:

*

* Various structures that support this small library

*

**

*

* Changes:

*

* DATE REVISION DESCRIPTION AUTHOR

* -------- -------- --

**/

#ifndef _L3STRUCT_H_

#define _L3STRUCT_H_

/***

*

* LL_Rect structure defines a general rectangular region

*

**/

typedef struct

{

 DWORD left; // x1

 DWORD top; // y1

 DWORD right; // x2

 DWORD bottom; // y2

} LL_Rect;

Copyright 1996 – Cirrus Logic Inc. 3-83 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/***

*

* LL_Color structure defines color by its components or index

*

**/

typedef struct

{

 union

 {

 struct // If in true color mode,

 {

 BYTE r; // Red component

 BYTE g; // Green component

 BYTE b; // Blue component

 };

 BYTE index; // Index if in 8bpp indexed mode

 };

} LL_Color;

/***

*

* LL_Pattern structure holds the pattern to be stored in the

* PATTERN_RAM registers. These values are used for pattern,

* dither or stipple (only one at a time).

*

**/

typedef struct // pattern holding structure

{

 DWORD pat[8]; // 8 word pattern

} LL_Pattern;

/***

*

* Buffer information structure (buffers A, B, Z, ...)

*

**/

typedef struct

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-84 Copyright 1996 – Cirrus Logic Inc.

{

 // for this example, all buffers are in RDRAM

 DWORD dwFlags; // Buffer flags

 DWORD dwAddress; // Buffer start byte address (abs linear)

 DWORD dwPitchBytes; // Pitch of a buffer in bytes

 LL_Rect Extent; // Buffer location offsets (video)

 // these fields are not used, but are examples of possible fields

 // for buffers in system memory

 DWORD dwPhyAdr; // Buffer physical address (system)

 DWORD dwPitchCode; // Pitch code of a buffer (system)

 DWORD hMem; // Internal memory handle (system)

} TBuffer;

/***

*

* LL_Texture structure defines a texture map

*

**/

typedef struct

{

 DWORD * dwAddress; // Pointer to texture storage location

 LL_Color * ColPalette; // Pointer to palette if indexed

 BYTE bMem; // Index to the texture memory block

 DWORD dwFlags; // Flags for the texture

 WORD wWidth; // Texture X dimension in texels

 WORD wHeight; // Texture Y dimension in texels

 BYTE bSizeMask; // Encoded size 0=16,... Y[7:4],X[3:0]

 BYTE bType; // Texture type

 BYTE fIndexed; // True for indexed textures

 BYTE bLookupOffset; // Palette lookup offset (indexed only)

 BYTE bBpp; // Bits per pixel

 BYTE bID; // Texture ID for the placement module

 WORD wXloc; // X offset location in bytes

 WORD wYloc; // Y offset location in lines

 DWORD dwUsed; // Usage count (for priorities)

} LL_Texture;

Copyright 1996 – Cirrus Logic Inc. 3-85 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/***

*

* TDisplayList structure defines a display list.

*

**/

typedef struct

{

 // pdwNext points to the next available location within this

 // display list to fill in the Laguna instruction.

 // It is used for parametarization routines that postincrement

 // this variable.

 //

 DWORD *pdwNext;

 // Memory handle for this display list as optained from the

 // internal memory allocation function

 //

 DWORD hMem;

 // Linear address of the display list

 //

 DWORD *pdwLinPtr;

 // Physical address for a display list is next; it can also

 // be the address to the page table. This address has the

 // appropriate format to be stored in the BASE* class registers

 //

 DWORD dwPhyPtr;

 // The length of a display list in bytes

 //

 DWORD dwLen;

 // Safety margin for building the display list

 //

 DWORD dwMargin;

} TDisplayList;

/***

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-86 Copyright 1996 – Cirrus Logic Inc.

*

* Control0_3d register bitfields

*

**/

typedef struct

{

 DWORD Pixel_Mode : 3; // Color frame buffer drawing mode

 DWORD Res1 : 1; // Reserved

 DWORD Pixel_Mask_Enable : 1; // Enables pixel masking

 DWORD Pixel_Mask_Polarity : 1; // Polarity of the pixel masks

 DWORD Color_Saturate_En : 1; // Enables saturation in indexed mode

 DWORD Red_Color_Compare_En : 1; // Enables compare to bounds for red

 DWORD Green_Color_Compare_En: 1; // Enables compare to bounds for green

 DWORD Blue_Color_Compare_En : 1; // Enables compare to bounds for blue

 DWORD Color_Compare_Mode : 1; // Mask inclusive/exclusive to bounds

 DWORD Alpha_Mode : 2; // Selects alpha blending mode

 DWORD Alpha_Dest_Color_Sel : 2; // Selects the DEST_RGB input to alpha

 DWORD Alpha_Blending_Enable : 1; // Enables alpha blending

 DWORD Z_Stride_Control : 1; // 16/8 bit Z depth

 DWORD Res2 : 3; // Reserved

 DWORD Z_Compare_Mode : 4; // Different Z compare function

 DWORD Z_Collision_Detect_En : 1; // Enables Z collision detection

 DWORD Light_Src_Sel : 2; // Selects the lighting source input

 DWORD Res3 : 1; // Reserved

 DWORD Z_Mode : 3; // Controls Z and color update method

 DWORD Res4 : 1; // Reserved

} TControl0Reg;

/***

*

* TSystem structure defines possible cached state information

*

**/

typedef struct

{

 // Laguna 3D registers software cache. These registers are

 // cached here in order to avoid unnecessary setup with the

 // possibly same values. Every time when one of these registers

 // need to be set, the content of the cache is compared and the

 // register is set only if it differs from the new value.

Copyright 1996 – Cirrus Logic Inc. 3-87 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 //

 DWORD dwDA_MAIN; // Current value of DA_MAIN_3D reg

 DWORD dwDA_ORTHO; // Current value of DA_ORTHO_3D reg

 union {

 TControl0Reg Control0; // Control 0 register shadow

 DWORD dwControl0;

 };

 DWORD dwColor_Min_Bounds; // Color compare min bounds

 DWORD dwColor_Max_Bounds; // Color compare max bounds

 DWORD dwBase0;

 DWORD dwBase1;

 DWORD dwTxControl0;

 DWORD dwTxXYBase;

 DWORD dwColor0; // Current value of COLOR_REG0_3D reg

 DWORD dwColor1; // Current value of COLOR_REG1_3D reg

 DWORD dwHXY_Base1_Address_Ptr; // State of the host access base reg 1

 DWORD dwHXY_Base1_Offset0; // State of the Offset base 1 reg

 DWORD dwHXYHostControl;

 DWORD dwFetchColor; // Equals FETCH_COLOR for color compares

 DWORD dwAlphaConstSource; // Constant source alpha (9:16)

 DWORD dwAlphaConstDest; // Constant destination alpha (9:16)

 // Buffer management

 TBuffer BufRender; // current rendering buffer structure

 TBuffer BufTextures; // backup buffer (textures) structure

 TBuffer BufZ; // Z buffer structure

 // Display lists management

 TDisplayList DL; // Current display list to build

 // Non-register state information

 DWORD dwFlags; // pixel depth flags

 BYTE *pRegs; // 5464 Register apperture

 BYTE *pFrame; // 5464 Frame apperture

 WORD wPCI_Interrupt; // Laguna PCI interrupt number

 WORD wPCI_Slot; // Laguna PCI slot

 DWORD dwVRAM; // Amount of video RAM in bytes

 DWORD pitch; // Screen pitch in bytes

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-88 Copyright 1996 – Cirrus Logic Inc.

 WORD wHoriz; // Display width in pixels

 WORD wVert; // Display height in pixels

 WORD wBpp; // Pixel depth (8, 16,...)

 BYTE fSingleRead; // Single read flag as opposed to burst

 BYTE fSingleWrite; // Single write flag as opposed to burst

 DWORD dwLatencyTimer; // Latency timer

 BYTE fIndexed; // True if indexed graphics mode is used

} TSystem;

/***

*

* LL_DeviceState structure defines possible cached state information

* that might be exported to a client of a graphics library

*

**/

typedef struct

{

 /* These three fields can be set before calling the LL_InitLib function */

 DWORD dwFlags; /* Init flags */

 DWORD dwDisplayListLen; /* Size of the display lists (in bytes) */

 DWORD dwSystemTexturesLen; /* Size of the system textures (in bytes)*/

 /* These variables can be used by the software */

 DWORD *pRegs; /* Laguna regs, ptr to mem mappped I/O */

 BYTE *pFrame; /* Frame, pointer to the a frame buffer */

 DWORD dwVRAM; /* Video memory on the card (in bytes) */

 WORD wHoriz; /* Current horizontal resolution */

 WORD wVert; /* Current vertical resolution */

 WORD wBpp; /* Current pixel depth */

} LL_DeviceState;

#endif // _L3STRUCT_H_

Copyright 1996 – Cirrus Logic Inc. 3-89 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.6.3 l3types.h

/***

*

* Module: l3types.h Generic Type Header Module

*

* Revision: 1.00

*

* Date: April 14, 1994

*

* Author: Cirrus Logic Austin Design Center

*

**

*

* Module Description:

*

* This module contains generic type declarations

*

**

*

* Changes:

*

* DATE REVISION DESCRIPTION AUTHOR

* -------- -------- --

* 04/14/95 1.00 Original Randy Spurlock

* 09/26/95 1.01 Add few new defines Goran Devic

* 02/15/96 1.02 Fit to L3d library format Goran Devic

* -------- -------- --

**/

#ifndef _L3TYPES_H_

#define _L3TYPES_H_

/***

* Type Definitions

**/

typedef int BOOL; /* Define a boolean as an integer */

typedef unsigned char BYTE; /* Define a byte data type */

typedef unsigned short int WORD; /* Define a word data type */

typedef unsigned long DWORD; /* Define a double word data type */

#endif // _L3TYPES_H_

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-90 Copyright 1996 – Cirrus Logic Inc.

3.6.4 modemon.h

/***
*

*

* Module: modemon.h Mode/Monitor Functions Header Module

*

* Revision: 1.00

*

* Date: April 8, 1994

*

* Author: Cirrus Logic Austin Design Center

*

**
*

*

* Module Description:

*

* This module contains the type declarations and function

* prototypes for the mode/monitor functions.

*

**
*

*

* Changes:

*

* DATE REVISION DESCRIPTION AUTHOR

* -------- -------- ---

**
/

#ifndef _MODEMON_H_

#define _MODEMON_H_

/***
*

* Type Definitions and Structures

**
/

typedef struct tagRange /* Range structure */

{

 union tagMinimum /* Minimum value for the range */

 {

 int nMin;

Copyright 1996 – Cirrus Logic Inc. 3-91 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 long lMin;

 float fMin;

 } Minimum;

 union tagMaximum /* Maximum value for the range */

 {

 int nMax;

 long lMax;

 float fMax;

 } Maximum;

} Range;

typedef struct tagMonListHeader /* Monitor list header structure */

{

 int nMonitor; /* Number of monitors in the list */

} MonListHeader;

typedef struct tagMonListEntry /* Monitor list entry structure */

{

 char *pszName; /* Pointer to monitor name string */

 char *pszDesc; /* Pointer to monitor description */

} MonListEntry;

typedef struct tagMonList /* Monitor list structure */

{

 MonListHeader MonHeader; /* Monitor list header */

 MonListEntry MonEntry[1]; /* Start of the monitor list entries */

} MonList;

typedef struct tagMonInfoHeader /* Monitor info. header structure */

{

 int nMode; /* Number of monitor modes in list */

} MonInfoHeader;

typedef struct tagMonInfoEntry /* Monitor info. entry structure */

{

 char *pszName; /* Pointer to monitor mode name */

 Range rHoriz; /* Horizontal range values */

 Range rVert; /* Vertical range values */

 int nSync; /* Horiz./Vert. sync. polarities */

 int nResX; /* Maximum suggested X resolution */

 int nResY; /* Maximum suggested Y resolution */

} MonInfoEntry;

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-92 Copyright 1996 – Cirrus Logic Inc.

typedef struct tagMonInfo /* Monitor information structure */

{

 MonInfoHeader MonHeader; /* Monitor information header */

 MonInfoEntry MonEntry[1]; /* Start of the monitor entries */

} MonInfo;

typedef struct tagModeInfoEntry /* Mode information entry structure */

{

 char *pszName; /* Pointer to mode name string */

 float fHsync; /* Horizontal sync. frequency value */

 float fVsync; /* Vertical sync. frequency value */

 int nResX; /* Horizontal (X) resolution value */

 int nResY; /* Vertical (Y) resolution value */

 int nBPP; /* Pixel depth (Bits/Pixel) */

 int nMemory; /* Memory size (Kbytes) */

 int nPitch; /* Pitch value (Bytes) */

 unsigned int nAttr; /* Mode attribute value */

} ModeInfoEntry;

typedef struct tagModeListHeader /* Mode list header structure */

{

 int nMode; /* Number of modes in the list */

} ModeListHeader;

typedef struct tagModeListEntry /* Mode list entry structure */

{

 ModeInfoEntry ModeEntry; /* Mode information entry */

 MonInfoEntry *pMonEntry; /* Monitor mode index value */

} ModeListEntry;

typedef struct tagModeList /* Mode list structure */

{

 ModeListHeader ModeHeader; /* Mode list header */

 ModeListEntry ModeEntry[1]; /* Start of the mode list entries */

} ModeList;

typedef struct tagModeInfo /* Mode information structure */

{

 ModeInfoEntry ModeEntry; /* Mode information entry */

} ModeInfo;

Copyright 1996 – Cirrus Logic Inc. 3-93 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

/***
*

* Function Prototypes

**
/

MonList *GetMonitorList(void);

MonInfo *GetMonitorInfo(char *);

ModeList *GetModeList(MonInfo *, char *);

ModeInfo *GetModeInfo(char *, char *);

BYTE *GetModeTable(char *, char *);

void SetMode(BYTE *, BYTE *);

#endif // _MODEMON_H_

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-94 Copyright 1996 – Cirrus Logic Inc.

3.7 Programming Examples

3.7.1 CL-GD5464 Setup

The following source code set up the CL-GD5464 for operation, and shows an example of execut-
ing a simple display list and exiting. The code uses some external routines that are provided and
some library routines that are not provided.

/***

*

* Module: trm.c

*

* Revision: 1.00

*

* Date: August 30, 1996

*

* Author: Cirrus Logic Austin Design Center

*

**

*

* Module Description:

*

* Set up for Laguna 3D 5464 part

*

**

*

* Changes:

*

* DATE REVISION DESCRIPTION AUTHOR

* -------- -------- --

**/

#include <stdlib.h> // Include standard library

#include <stdio.h> // Include standard input/output

#include <conio.h> // getch

#include <i86.h> // Include x86 specific library

#include "trm.h" // self

#include "l3struct.h" // laguna structures

#include "l3types.h" // laguna types

#include "modemon.h" // ModeInfo

// global variables

Copyright 1996 – Cirrus Logic Inc. 3-95 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

TSystem LL_State; // main global Laguna device state

ModeInfo *pModeInfo; // Pointer to mode information

char *pModeTable; // Pointer to mode table

// useful local definitions

#define ERROR 1

#define DISPLAY_LIST_SIZE 1048576 // 1 MB for testing purposes

#define TEXTURE_LENGTH 1048576 // 1 MB for host textures

#define DL_START_OFFSET 20 // 5 dwords offset for display list

#define EBIOS_CLGD5464 0x64 // BIOS Laguna 3D signature

#define EBIOS_CLGD5464B 0x61 // BIOS Laguna 3D alternate signature

/***

*

* void LL_Init()

*

* Set up Laguna 3D for operation

*

**/

int LL_Init() // set up

{

 int rc=0; // return code

 union REGS r; // i86 registers

 char sBuf[128]; // Temp buffer for initialization info

 char sMode[128]; // Temp buffer for mode name

 DWORD z_buf_addr;

 DWORD *pTex;

 // INITIALIZE DISPLAY ADAPTER ===

 //

 // The following code section relies on library calls to do such things as

 // reading initialization files, obtaining PCI addresses and setting

 // the graphics mode. These routines are not provided as part of this

 // example but are expected to be provided as an appendix to this document.

 // The routines are:

 //

 // GetPrivateProfileString()

 // GetRegisterApperture()

 // GetLagunaApperture()

 // GetModeInfo()

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-96 Copyright 1996 – Cirrus Logic Inc.

 // GetModeTable()

 // SetMode()

 // read and store chipset-specific and other settings from .ini files

 //

 GetPrivateProfileString("SYSTEM", "PCI_MASTER_READ", "SINGLE",

 sBuf, 128, "LAGUNA.INI");

 if(!strcmp(sBuf, strupr("BURST")))

 LL_State.fSingleRead = 0;

 else

 LL_State.fSingleRead = 1;

 GetPrivateProfileString("SYSTEM", "PCI_MASTER_WRITE", "SINGLE",

 sBuf, 128, "LAGUNA.INI");

 if(!strcmp(sBuf, strupr("BURST")))

 LL_State.fSingleWrite = 0;

 else

 LL_State.fSingleWrite = 1;

 GetPrivateProfileString("SYSTEM", "PCI_MASTER_LATENCY_TIMER", "255",

 sBuf, 128, "LAGUNA.INI");

 sscanf(sBuf, "%d", &LL_State.dwLatencyTimer);

 // First, use Extended BIOS to get the graphics card information

 //

 r.h.ah = 0x12;

 r.h.bl = 0x80;

 int386(0x10, &r, &r);

 if((r.w.ax != EBIOS_CLGD5464) &&

 (r.w.ax != EBIOS_CLGD5464B))

 return(ERROR);

 // Get the amount of the video memory present

 //

 r.h.ah = 0x12;

 r.h.bl = 0x85;

 int386(0x10, &r, &r);

Copyright 1996 – Cirrus Logic Inc. 3-97 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 LL_State.dwVRAM = r.h.al * 64 * 1024;

 // Get the register and frame appertures

 //

 LL_State.pRegs = (BYTE *) GetRegisterApperture();

 LL_State.pFrame = (BYTE *) GetLagunaApperture(1);

 // Get the mode information and set the structure that defines

 // the state of the graphics device (DC)

 //

 GetPrivateProfileString("MODE", "VIDEO", "MODE_640X480X16_1",

 sMode, 128, "TRM.INI");

 pModeInfo = GetModeInfo("5462", sMode);

 if(pModeInfo == NULL)

 {

 printf("error getting mode info\n");

 return(ERROR);

 }

 // retrieve screen size and pixel depth parameters

 //

 LL_State.wHoriz = pModeInfo->ModeEntry.nResX;

 LL_State.wVert = pModeInfo->ModeEntry.nResY;

 LL_State.wBpp = pModeInfo->ModeEntry.nBPP;

 // We dont need mode structure any more

 //

 free(pModeInfo);

 // now we will actually set the video mode, so get the mode tables

 //

 pModeTable = GetModeTable("5462", sMode);

 if(pModeInfo == NULL)

 {

 printf("error getting mode table\n");

 return(ERROR);

 }

 // set the video mode and free the structure

 //

 SetMode(pModeTable, LL_State.pRegs);

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-98 Copyright 1996 – Cirrus Logic Inc.

 free(pModeTable);

 // clear all of RDRAM

 //

 memset(LL_State.pFrame, 0, LL_State.dwVRAM);

 // calculate the pitch of the given graphics mode: read CR13 (Offset Register)

 //

 LL_State.pitch = *(LL_State.pRegs + 0x4C) & 0xff;

 // read CR1B, which contains Offset Register[8]

 //

 if(*(LL_State.pRegs + 0x6c) & 0x10)

 LL_State.pitch += 256;

 // read CR1D, which contains Offset Register[9]

 //

 if(*(LL_State.pRegs + 0x74) & 1)

 LL_State.pitch += 512;

 // pitch is an oct-byte value, convert to bytes

 //

 LL_State.pitch *= 8;

 // INITIALIZE REGISTER FILE ===

 CLEAR_RANGE(X_3D, DU_ORTHO_ADD_3D); // clear 3D interpolators

 CLEAR_RANGE(A_3D, DA_ORTHO_3D); // clear 3D interpolators

 CLEAR_RANGE(COLOR_MIN_BOUNDS_3D, COLOR_MAX_BOUNDS_3D);

 SETREG(WIDTH1_3D, 0x10000); // init polyengine reg WIDTH1_3D to 1

 SETREG(CONTROL_MASK_3D, 0); // enable writes to all fields

 SETREG(CONTROL1_3D, 0); // initialize

 // set Base0 address register:

 // * Color buffer X offset of 0

 // * Color buffer location in RDRAM

 // * Z buffer location in RDRAM

 // * Textures in RDRAM

 // * Pattern offset of 0

 //

 SETREG(BASE0_ADDR_3D, 0);

Copyright 1996 – Cirrus Logic Inc. 3-99 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 // set Base1 address register:

 // * Color buffer Y offset of 0

 // * Z buffer Y offset to 0

 //

 SETREG(BASE1_ADDR_3D, 0);

 // set texture control register:

 // * Texture U, V masks to 16

 // * Texture U, V wraps

 // * Texel mode temporarily to 0

 // * Texel lookup to no lookup

 // * Texture data is lighting source

 // * Filtering disabled

 // * Texture polarity of type 0

 // * Texture masking diasabled

 // * Texture mask function to Write mask

 // * Address mux to 0

 // * CLUT offset to 0

 //

 SETREG(TX_CTL0_3D, 0);

 SETREG(TX_XYBASE_3D, 0); // Set texture base reg and cache

 SETREG(TX_CTL1_3D, 0); // Set tex color bounds

 SETREG(TX_CTL2_3D, 0); // Set tex color bounds

 SETREG(COLOR0_3D, 0); // Set color 0 reg/cache

 SETREG(COLOR0_3D, 0); // Set color 1 reg/cache

 SETREG(X_CLIP_3D, 0); // Reset clipping reg

 SETREG(Y_CLIP_3D, 0); // Reset clipping reg

 SETREG(TEX_SRAM_CTRL_3D, 0); // Set a 2D ctrl reg

 // INITIALIZE HOST XY UNIT REGISTERS ======================================

 // set host xy control register:

 // * HostXY is disabled

 // * Pitch is set to 1024 (100001b)

 //

 SETREG(HXY_HOST_CTRL_3D, 0x21 << 8);

 // intialize host base 0 regs

 SETREG(HXY_BASE0_ADDRESS_PTR_3D, 0);

 SETREG(HXY_BASE0_START_XY_3D, 0);

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-100 Copyright 1996 – Cirrus Logic Inc.

 SETREG(HXY_BASE0_EXTENT_XY_3D, 0);

 // initialize host base 1 regs

 SETREG(HXY_BASE1_ADDRESS_PTR_3D, 0);

 SETREG(HXY_BASE1_OFFSET0_3D, 0);

 SETREG(HXY_BASE1_OFFSET1_3D, 0);

 SETREG(HXY_BASE1_LENGTH_3D, 0);

 // initialize mailbox registers

 SETREG(MAILBOX0_3D, 0);

 SETREG(MAILBOX1_3D, 0);

 SETREG(MAILBOX2_3D, 0);

 SETREG(MAILBOX3_3D, 0);

 // INITIALIZE PREFETCH UNIT REGISTERS =====================================

 SETREG(PF_CTRL_3D, 0); // Disable Prefetch

 SETREG(PF_BASE_ADDR_3D, 0); // Set prefetch base reg

 SETREG(PF_INST_3D, IDLE); // Write an IDLE instruction

 SETREG(PF_DEST_ADDR_3D, 0); // Set prefetch dest address

 SETREG(PF_FB_SEG_3D, 0); // Set frame segment reg

 SETREG(PF_STATUS_3D, 0); // Reset Display_List_Switch

 // set read/write bursting mode: these values are read from a file in this

 // example so as to be configurable based on the capabilities of a specific
chipset

 //

 SETREG(HOST_MASTER_CTRL_3D, (LL_State.fSingleRead << 1) |
LL_State.fSingleWrite);

 // 3d instruction track disable, fetch on request, enable instruction fetch

 SETREG(PF_CTRL_3D, 0x19);

 // set up control0_3d register for 16 bpp mode, 565, minimal features

 //

 // start with all bits clear: that implies

 // * Z mode normal, Z-collision detect disabled, 16-bit Z buffer

 // * Lighting source is poly engine

 // * Alpha blending disabled

 // * Color saturation disabled

 // * Color compares disabled

 // * Pixel mask disabled

Copyright 1996 – Cirrus Logic Inc. 3-101 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 //

 LL_State.dwControl0 = 0;

 // now set pixel depth

 //

 LL_State.Control0.Pixel_Mode = PIXEL_MODE_565;

 // write the register

 //

 SETREG(CONTROL0_3D, LL_State.dwControl0);

 // INITIALIZE BUFFER MANAGEMENT: A, B (textures) and Z ====================

 rc = LL_InitBuffers();

 if (rc)

 goto exit;

 // calculate z buffer y offset

 z_buf_addr = LL_State.BufZ.Extent.top;

 z_buf_addr /= 32; // this is a 32-line offset from color buffer

 z_buf_addr <<= 21; // the address is stored in BASE1_ADDR[28:21]

 // Set rendering buffer x and y offsets, z buffer y offset

 SETREG(BASE0_ADDR_3D, 0);

 SETREG(BASE1_ADDR_3D, z_buf_addr);

 // INITIALIZE A SINGLE DISPLAY LIST =======================================

 //

 // This section relies on library routines to allocate and manage memory.

 // They are expected to be provided as an appendix to this document.

 // The routines are:

 //

 // AllocSystemMemory()

 // GetLinearAddress()

 // GetPhysicalAddress()

 // allocate 1 MB system memory for the display list

 //

 if((LL_State.DL.hMem = AllocSystemMemory(DISPLAY_LIST_SIZE)) == 0)

 return(ERROR);

 // retrieve the linear and physical addresses of the display list

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-102 Copyright 1996 – Cirrus Logic Inc.

 //

 LL_State.DL.pdwLinPtr = (DWORD *) GetLinearAddress(LL_State.DL.hMem);

 LL_State.DL.dwPhyPtr = GetPhysicalAddress(LL_State.DL.hMem);

 // set the length and the display list pointer to point to an offset

 // of 20: 4 dwords are reserved for an interrupt jump table, and an

 // additional dword for a display list semaphore (this is implementation-

 // dependent)

 //

 LL_State.DL.dwLen = DISPLAY_LIST_SIZE;

 LL_State.DL.pdwNext = LL_State.DL.pdwLinPtr + 5; // + 20 bytes

 // clear the jump table and a semaphore

 //

 LL_State.DL.pdwNext[0] = IDLE;

 LL_State.DL.pdwNext[1] = IDLE;

 LL_State.DL.pdwNext[2] = IDLE;

 LL_State.DL.pdwNext[3] = IDLE;

 LL_State.DL.pdwNext[4] = 0;

 // temporary fix for non-flushing TLB

 //

 *(DWORD *)((DWORD)LL_State.DL.pdwLinPtr + DISPLAY_LIST_SIZE - 16) = BRANCH
+ 20;

 // write base address of display list to the register that stores this value

 //

 SETREG(PF_BASE_ADDR_3D, LL_State.DL.dwPhyPtr);

 // make the screen white

 //

 memset(LL_State.pFrame, 255, LL_State.wHoriz * LL_State.wVert * 2);

 // create a texture on-the-fly to fill buffer B

 //

 for (pTex = (DWORD *)LL_State.BufTextures.dwAddress;

 pTex <= (DWORD *)LL_State.BufTextures.dwAddress + LL_State.wHoriz *
LL_State.wVert / 2;

 pTex++)

 {

 *pTex = (DWORD) pTex;

 }

Copyright 1996 – Cirrus Logic Inc. 3-103 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

exit:

 return(rc);

}

/***

*

* void LL_Terminate()

*

* Shutdown Laguna 3D after operation

*

*

**/

int LL_Terminate() // shutdown Laguna 3D

{

 union REGS r;

 LL_Wait();

 // Get the video mode info to reset

 //

 pModeTable = GetModeTable("5462", "MODE_RESET");

 if(pModeInfo == NULL)

 return(ERROR);

 // Set the video mode "reset"

 //

 SetMode(pModeTable, LL_State.pRegs);

 free(pModeTable);

 // Finally, set the BIOS video mode 3

 //

 r.w.ax = 0x0003;

 int386(0x10, &r, &r);

 return(0);

}

/***

*

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-104 Copyright 1996 – Cirrus Logic Inc.

* void LL_print_regs()

*

* Wait for 3D engine to idle by spinning on prefetch status register

*

**/

void LL_Wait()

{

 while ((*(DWORD *)(LL_State.pRegs + PF_STATUS_3D)) & 0x3e0)

 {

 printf("status: %08x\n", *(DWORD *)(LL_State.pRegs + PF_STATUS_3D));

 };

}

/***

*

* void main()

*

**/

void main()

{

 int rc=0;

 BYTE *pRegs;

 // setup

 rc = LL_Init();

 if (rc)

 goto exit;

 printf("setup: %s\n", rc == 0 ? "OK" : "ERROR");

 // obtain local pointer to Laguna register file

 pRegs = LL_State.pRegs;

 // dump Laguna 5464 state information if desired

 // LL_print_state();

 // dump Laguna 5464 registers if desired

 // LL_print_regs();

 // start a simple display list:

Copyright 1996 – Cirrus Logic Inc. 3-105 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 // any of the display lists from dlists.c can be inserted here

 //

 dl_poly_set4(LL_State.DL.pdwNext);

 // branch to the display list and execute

 *(DWORD *)(LL_State.pRegs + PF_INST_3D) = BRANCH + DL_START_OFFSET;

 // wait after the display list before we launch another

 LL_Wait();

 getch();

 // peek at our texture buffer

 LL_SetDisplayBuffer(&LL_State.BufTextures);

 getch();

 // peek at the z buffer

 LL_SetDisplayBuffer(&LL_State.BufZ);

 getch();

 // shutdown Laguna

 rc = LL_Terminate();

 printf("shutdown: %s\n", rc == 0 ? "OK" : "ERROR");

exit:

 printf("exit: %x\n", rc);

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-106 Copyright 1996 – Cirrus Logic Inc.

3.7.2 Z-Buffered Points

Each of the following code examples require the include and extern statements from the Z-Buff-
ered Points example.

/***

*

* Module: dlists.c

*

* Revision: 1.00

*

* Date: Sept 3, 1996

*

* Author: Cirrus Logic Austin Design Center

*

**

*

* Module Description:

*

* Various display lists as TRM examples

*

**

*

* Changes:

*

* DATE REVISION DESCRIPTION AUTHOR

* -------- -------- --

**/

#include <stdio.h> // printf

#include "l3types.h" // laguna types

#include "l3struct.h" // TSystem

extern TSystem LL_State;

/***

*

* dl_point_set0()

*

* draw three z-buffered points in the top left corner, red, green, blue

*

**/

Copyright 1996 – Cirrus Logic Inc. 3-107 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

void dl_point_set0(DWORD *pdwNext)

{

 *pdwNext++ = 0x18000181;// WRITE_3D_REG reg: 4018 Y_COUNT_3D

 *pdwNext++ = 0x00000000;// - set y count to 1 for points

 *pdwNext++ = 0x00002006;// DRAW_POINT im: 0002Z-Buffer

 *pdwNext++ = 0x00100000;// X_3D X value: 16.000

 *pdwNext++ = 0x00100000;// Y_3D Y value: 16.000

 *pdwNext++ = 0x00ff0000;// R_3D R value: 255.000

 *pdwNext++ = 0x00000000;// G_3D G value: 0.000

 *pdwNext++ = 0x00000000;// B_3D B value: 0.000

 *pdwNext++ = 0x27810000;// Z_3D Z val: 10113.000

 *pdwNext++ = 0x00002006;// DRAW_POINT im: 0002Z-Buffer

 *pdwNext++ = 0x00100000;// X_3D X value: 16.000

 *pdwNext++ = 0x00200000;// Y_3D Y value: 32.000

 *pdwNext++ = 0x00000000; // R_3D R value: 0.000

 *pdwNext++ = 0x00ff0000;// G_3D G value: 255.000

 *pdwNext++ = 0x00000000;// B_3D B value: 0.000

 *pdwNext++ = 0x3f540000;// Z_3D Z val: 16212.000

 *pdwNext++ = 0x00002006;// DRAW_POINT im: 0002Z-Buffer

 *pdwNext++ = 0x00200000;// X_3D X value: 32.000

 *pdwNext++ = 0x00100000;// Y_3D Y value: 16.000

 *pdwNext++ = 0x00000000;// R_3D R value: 0.000

 *pdwNext++ = 0x00000000;// G_3D G value: 0.000

 *pdwNext++ = 0x00ff0000;// B_3D B value: 255.000

 *pdwNext++ = 0x7de10000;// Z_3D Z val: 32225.000

 *pdwNext++ = 0x68000000;// IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-108 Copyright 1996 – Cirrus Logic Inc.

3.7.3 Alpha-Blended Points

/***

*

* dl_point_set1()

*

* draw three mostly red points at top of screen, alpha blend with

* three mostly green points at the same spot, result is a dull yellow

*

**/

void dl_point_set1(DWORD *pdwNext)

{

 *pdwNext++ = 0x18000181; // WRITE_3D_REG reg: 4018 Y_COUNT_3D

 *pdwNext++ = 0x00000000; // - set y count to 1 for points

 *pdwNext++ = 0x00000005; // DRAW_POINT im: 0000

 *pdwNext++ = 0x00000000; // X_3D X value: 0.000

 *pdwNext++ = 0x00000000; // Y_3D Y value: 0.000

 *pdwNext++ = 0x00ff0000; // R_3D R value: 255.000

 *pdwNext++ = 0x00320000; // G_3D G value: 50.000

 *pdwNext++ = 0x00320000; // B_3D B value: 50.000

 *pdwNext++ = 0x00000005; // DRAW_POINT im: 0000

 *pdwNext++ = 0x00010000; // X_3D X value: 1.000

 *pdwNext++ = 0x00000000; // Y_3D Y value: 0.000

 *pdwNext++ = 0x00ff0000; // R_3D R value: 255.000

 *pdwNext++ = 0x00320000; // G_3D G value: 50.000

 *pdwNext++ = 0x00320000; // B_3D B value: 50.000

 *pdwNext++ = 0x00000005; // DRAW_POINT im: 0000

 *pdwNext++ = 0x00020000; // X_3D X value: 2.000

 *pdwNext++ = 0x00000000; // Y_3D Y value: 0.000

 *pdwNext++ = 0x00ff0000; // R_3D R value: 255.000

 *pdwNext++ = 0x00320000; // G_3D G value: 50.000

 *pdwNext++ = 0x00320000; // B_3D B value: 50.000

 *pdwNext++ = 0x18001041; // WRITE_3D_REG reg: 4104 CONTROL0_3D

 *pdwNext++ = 0x04008002; // - light source = COLOR_REG1_3D

 // - alpha blending enable

 // - preserve 16 bpp

 *pdwNext++ = 0x18000c42; // WRITE_3D_REG reg: 40c4 DA_MAIN_3D

 *pdwNext++ = 0x00800000; // - set da_main for constant alpha blending

 *pdwNext++ = 0x00800000; // - set da_ortho for constant alpha blending

Copyright 1996 – Cirrus Logic Inc. 3-109 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 *pdwNext++ = 0x00800005; // DRAW_POINT im: 0800FetchColor

 *pdwNext++ = 0x00000000; // X_3D X value: 0.000

 *pdwNext++ = 0x00000000; // Y_3D Y value: 0.000

 *pdwNext++ = 0x00320000; // R_3D R value: 50.000

 *pdwNext++ = 0x00ff0000; // G_3D G value: 255.000

 *pdwNext++ = 0x00320000; // B_3D B value: 50.000

 *pdwNext++ = 0x00800005; // DRAW_POINT im: 0800FetchColor

 *pdwNext++ = 0x00010000; // X_3D X value: 1.000

 *pdwNext++ = 0x00000000; // Y_3D Y value: 0.000

 *pdwNext++ = 0x00320000; // R_3D R value: 50.000

 *pdwNext++ = 0x00ff0000; // G_3D G value: 255.000

 *pdwNext++ = 0x00320000; // B_3D B value: 50.000

 *pdwNext++ = 0x00800005; // DRAW_POINT im: 0800FetchColor

 *pdwNext++ = 0x00020000; // X_3D X value: 2.000

 *pdwNext++ = 0x00000000; // Y_3D Y value: 0.000

 *pdwNext++ = 0x00320000; // R_3D R value: 50.000

 *pdwNext++ = 0x00ff0000; // G_3D G value: 255.000

 *pdwNext++ = 0x00320000; // B_3D B value: 50.000

 *pdwNext++ = 0x68000000;// IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-110 Copyright 1996 – Cirrus Logic Inc.

3.7.4 Gouraud-Shaded Lines

/***

*

* dl_line_set0()

*

* draw three gouraud shaded lines

*

**/

void dl_line_set0(DWORD *pdwNext)

{

 *pdwNext++ = 0x0800100b; // DRAW_LINE im: 0001Gouraud

 *pdwNext++ = 0x02628000; // X_3D X value: 610.500

 *pdwNext++ = 0x00db8000; // Y_3D Y value: 219.500

 *pdwNext++ = 0x00930000; // R_3D R value: 147.000

 *pdwNext++ = 0x00060000; // G_3D G value: 6.000

 *pdwNext++ = 0x00c70000; // B_3D B value: 199.000

 *pdwNext++ = 0xffff0000; // DX_MAIN_3D dx main: -1.000

 *pdwNext++ = 0x0000019c; // Y_COUNT_3D y count1: 0 y count2: 412

 *pdwNext++ = 0x0000a0ed; // WIDTH1_3D width 1: 0.629

 *pdwNext++ = 0x00000d0c; // DR_MAIN_3D dr main: 0.051

 *pdwNext++ = 0x00006901; // DG_MAIN_3D dg main: 0.410

 *pdwNext++ = 0xfffffe22; // DB_MAIN_3D db main: -1.993

 *pdwNext++ = 0x0800100b; // DRAW_LINE im: 0001Gouraud

 *pdwNext++ = 0x007c8000; // X_3D X value: 124.500

 *pdwNext++ = 0x003c8000; // Y_3D Y value: 60.500

 *pdwNext++ = 0x005f0000; // R_3D R value: 95.000

 *pdwNext++ = 0x00cb0000; // G_3D G value: 203.000

 *pdwNext++ = 0x00630000; // B_3D B value: 99.000

 *pdwNext++ = 0x0000cd91; // DX_MAIN_3D dx main: 0.803

 *pdwNext++ = 0x00000042; // Y_COUNT_3D y count1: 0 y count2: 66

 *pdwNext++ = 0x00010000; // WIDTH1_3D width 1: 1.000

 *pdwNext++ = 0x0001745a; // DR_MAIN_3D dr main: 1.454

 *pdwNext++ = 0xfffef07e; // DG_MAIN_3D dg main: -2.939

 *pdwNext++ = 0xfffff07c; // DB_MAIN_3D db main: -1.939

 *pdwNext++ = 0x0800100b; // DRAW_LINE im: 0001Gouraud

 *pdwNext++ = 0x01bc8000; // X_3D X value: 444.500

 *pdwNext++ = 0x00b98000; // Y_3D Y value: 185.500

 *pdwNext++ = 0x00590000; // R_3D R value: 89.000

 *pdwNext++ = 0x00ac0000; // G_3D G value: 172.000

 *pdwNext++ = 0x00740000; // B_3D B value: 116.000

 *pdwNext++ = 0x000064fb; // DX_MAIN_3D dx main: 0.394

Copyright 1996 – Cirrus Logic Inc. 3-111 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 *pdwNext++ = 0x0000006d; // Y_COUNT_3D y count1: 0 y count2: 109

 *pdwNext++ = 0x00010000; // WIDTH1_3D width 1: 1.000

 *pdwNext++ = 0x00010705; // DR_MAIN_3D dr main: 1.027

 *pdwNext++ = 0xffffb4da; // DG_MAIN_3D dg main: -1.706

 *pdwNext++ = 0x000133a3; // DB_MAIN_3D db main: 1.202

 *pdwNext++ = 0x68000000; // IDLE

}

3.7.5 Gouraud-Shaded, Dithered Polygon

/***

*

* dl_poly_set0()

*

* draw a single polygon that is gouraud shaded and dithered

*

**/

void dl_poly_set0(DWORD *pdwNext)

{

 *pdwNext++ = 0x1020100f; // DRAW_POLY im: 0201Dither Gouraud

 *pdwNext++ = 0x81fb8000; // X_3D X value: 507.500

 *pdwNext++ = 0x01120000; // Y_3D Y value: 274.000

 *pdwNext++ = 0x00ba0000; // R_3D R value: 186.000

 *pdwNext++ = 0x00420000; // G_3D G value: 66.000

 *pdwNext++ = 0x00710000; // B_3D B value: 113.000

 *pdwNext++ = 0xffffda40; // DX_MAIN_3D dx main: -1.853

 *pdwNext++ = 0x00280015; // Y_COUNT_3D y count1: 40 y count2: 21

 *pdwNext++ = 0x0014fff0; // DWIDTH1_3D dwidth1: 21.999

 *pdwNext++ = 0xfff42773; // DWIDTH2_3D dwidth2: -12.308

 *pdwNext++ = 0xffff5c55; // DR_MAIN_3D dr main: -1.361

 *pdwNext++ = 0x00028211; // DG_MAIN_3D dg main: 2.508

 *pdwNext++ = 0x0001714b; // DB_MAIN_3D db main: 1.443

 *pdwNext++ = 0x00001010; // DR_ORTHO_3D dr orth: 0.063

 *pdwNext++ = 0xffffee46; // DG_ORTHO_3D dg orth: -1.931

 *pdwNext++ = 0x00000f82; // DB_ORTHO_3D db orth: 0.061

 *pdwNext++ = 0x68000000; // IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-112 Copyright 1996 – Cirrus Logic Inc.

3.7.6 Polygons with Z-Buffering, Flat-Shading, and Other Modifiers

/***

*

* dl_poly_set1()

*

* draw 2 polygons with various features

*

**/

void dl_poly_set1(DWORD *pdwNext)

{

 // z-buffered, flat-shaded, dithered polygon, load initial width: flat top

 *pdwNext++ = 0x1120200e; // DRAW_POLY im: 1202InitialWdth Dither Z-
Buffer

 *pdwNext++ = 0x000a8000; // X_3D X value: 10.500

 *pdwNext++ = 0x000a0000; // Y_3D Y value: 10.000

 *pdwNext++ = 0x00640000; // R_3D R value: 100.000

 *pdwNext++ = 0x00320000; // G_3D G value: 50.000

 *pdwNext++ = 0x00c80000; // B_3D B value: 200.000

 *pdwNext++ = 0x00000005; // DX_MAIN_3D dx main: 0.000

 *pdwNext++ = 0x000000be; // Y_COUNT_3D y count1: 0 y count2: 190

 *pdwNext++ = 0x01230000; // WIDTH1_3D width 1: 291.000

 *pdwNext++ = 0x00000000; // WIDTH2_3D width 2: 0.000

 *pdwNext++ = 0xfffe7953; // DWIDTH1_3D dwidth1: -2.947

 *pdwNext++ = 0x00000000; // DWIDTH2_3D dwidth2: 0.000

 *pdwNext++ = 0x00640000; // Z_3D Z val: 100.000

 *pdwNext++ = 0x000f38e0; // DZ_MAIN_3D Z main: 15.222

 *pdwNext++ = 0x00031380; // DZ_ORTHO_3D Z orth: 3.076

 *pdwNext++ = 0x180001c1; // WRITE_3D_REG reg: 401c WIDTH1_3D

 *pdwNext++ = 0x00010000; // - reset initial width back to 1

 // z-buffered, gouraud shaded, dithered polygon

 *pdwNext++ = 0x10203012; // DRAW_POLY im: 0203Dither Z-Buffer Gouraud

 *pdwNext++ = 0x80328000; // X_3D X value: 50.500

 *pdwNext++ = 0x00140000; // Y_3D Y value: 20.000

 *pdwNext++ = 0x00000000; // R_3D R value: 0.000

 *pdwNext++ = 0x00ff0000; // G_3D G value: 255.000

 *pdwNext++ = 0x00ff0000; // B_3D B value: 255.000

 *pdwNext++ = 0x0001942b; // DX_MAIN_3D dx main: 1.579

 *pdwNext++ = 0x000b00b3; // Y_COUNT_3D y count1: 11 y count2: 179

Copyright 1996 – Cirrus Logic Inc. 3-113 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 *pdwNext++ = 0x000193e1; // DWIDTH1_3D dwidth1: 2.155

 *pdwNext++ = 0xffe399a5; // DWIDTH2_3D dwidth2: -30.200

 *pdwNext++ = 0x00015787; // DR_MAIN_3D dr main: 1.342

 *pdwNext++ = 0xfffea878; // DG_MAIN_3D dg main: -2.658

 *pdwNext++ = 0x00000000; // DB_MAIN_3D db main: 0.000

 *pdwNext++ = 0x00000c9e; // DR_ORTHO_3D dr orth: 0.049

 *pdwNext++ = 0x0000da21; // DG_ORTHO_3D dg orth: 0.852

 *pdwNext++ = 0xffff1a26; // DB_ORTHO_3D db orth: -1.102

 *pdwNext++ = 0x03e80000; // Z_3D Z val: 1000.000

 *pdwNext++ = 0x0024be40; // DZ_MAIN_3D Z main: 36.743

 *pdwNext++ = 0xffe94220; // DZ_ORTHO_3D Z orth: -23.258

 *pdwNext++ = 0x68000000; // IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-114 Copyright 1996 – Cirrus Logic Inc.

3.7.7 Polygon Showing Z-Buffering, Stippling, and Constant Lighting

/***

*

* dl_poly_set2()

*

* draw 1 polygon: uses constant lighting

*

**/

void dl_poly_set2(DWORD *pdwNext)

{

 // you have to load the pattern registers if you want to do stipple ...

 *pdwNext++ = 0x18001408; // WRITE_3D_REG reg: 4114 PATTERN_RAM_0_3D

 *pdwNext++ = 0x04150415; // load pattern ram

 *pdwNext++ = 0x62736273;

 *pdwNext++ = 0x15041504;

 *pdwNext++ = 0x73627362;

 *pdwNext++ = 0x04150415;

 *pdwNext++ = 0x62736273;

 *pdwNext++ = 0x15041504;

 *pdwNext++ = 0x73627362;

 // render a stippled, lit, z-buffered poly that is flat-top (initial width
load)

 *pdwNext++ = 0x18001041; // WRITE_3D_REG reg: 4104 CONTROL0_3D

 *pdwNext++ = 0x04000002; // - light source = COLOR_REG1_3D

 // - preserve 16 bpp

 *pdwNext++ = 0x18001341; // WRITE_3D_REG reg: 4134 COLOR1_3D

 *pdwNext++ = 0x0022ff22; // - load lighting value: keep red, dim green,
blue

 *pdwNext++ = 0x110c3014; // DRAW_POLY im: 10c2 (iw, stipple, light, z,
gouraud)

 *pdwNext++ = 0x00c88000; // X_3D X value: 200.500

 *pdwNext++ = 0x00640000; // Y_3D Y value: 100.000

 *pdwNext++ = 0x00640000; // R_3D R value: 100.000

 *pdwNext++ = 0x00640000; // G_3D G value: 100.000

 *pdwNext++ = 0x00f00000; // B_3D B value: 240.000

 *pdwNext++ = 0x00005558; // DX_MAIN_3D dx main: 0.333

Copyright 1996 – Cirrus Logic Inc. 3-115 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 *pdwNext++ = 0x0000012c; // Y_COUNT_3D y count1: 0 y count2: 300

 *pdwNext++ = 0x00c90000; // WIDTH1_3D width 1: 201.000

 *pdwNext++ = 0x00000000; // WIDTH2_3D width 2: 0.000

 *pdwNext++ = 0xffff5559; // DWIDTH1_3D dwidth1: -1.666

 *pdwNext++ = 0x00000000; // DWIDTH2_3D dwidth2: 0.000

 *pdwNext++ = 0x00015787; // DR_MAIN_3D dr main: 1.342

 *pdwNext++ = 0xfffea878; // DG_MAIN_3D dg main: -2.658

 *pdwNext++ = 0x00000000; // DB_MAIN_3D db main: 0.000

 *pdwNext++ = 0x00000c9e; // DR_ORTHO_3D dr orth: 0.049

 *pdwNext++ = 0x0000da21; // DG_ORTHO_3D dg orth: 0.852

 *pdwNext++ = 0xffff1a26; // DB_ORTHO_3D db orth: -1.102

 *pdwNext++ = 0x23280000; // Z_3D Z val: 9000.000

 *pdwNext++ = 0xfff60550; // DZ_MAIN_3D Z main: -10.021

 *pdwNext++ = 0xffe22760; // DZ_ORTHO_3D Z orth: -30.154

 *pdwNext++ = 0x180001c1; // WRITE_3D_REG reg: 401c WIDTH1_3D

 *pdwNext++ = 0x00010000; // - reset initial width

 *pdwNext++ = 0x68000000; // IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-116 Copyright 1996 – Cirrus Logic Inc.

3.7.8 Polygons Showing Texture Mapping

/***

*

* dl_poly_set3()

*

* draw 2 polygons with various features

*

**/

void dl_poly_set3(DWORD *pdwNext)

{

 DWORD tex_y_addr;

 // set y offset for texture buffer; x offset is set to 0

 tex_y_addr = (LL_State.BufTextures.Extent.top / 16) << 20;

 // textured, z-buffered polygon (dont-load-color: no need with textures)

 //

 // NOTE: this example assumes a texture map has been previously loaded

 // into RDRAM into our texture buffer, and that the texture is in

 // 5:6:5 mode with dimensions 128x128 (this was accomplished by creating

 // a texture on-the-fly in LL_Init() for this example code)

 *pdwNext++ = 0x18001202; // WRITE_3D_REG reg: 4120 TX_CTL0_3D

 *pdwNext++ = 0x00000433; // - texture is 5:6:5, 128 x 128

 *pdwNext++ = tex_y_addr; // - tx_xybase reg = texture xy address

 *pdwNext++ = 0x1002a00f; // DRAW_POLY im: 002aTexLin Z-Buffer
DontLoadColor

 *pdwNext++ = 0x82268000; // X_3D X value: 550.500

 *pdwNext++ = 0x00960000; // Y_3D Y value: 150.000

 *pdwNext++ = 0xffff99a0; // DX_MAIN_3D dx main: -1.600

 *pdwNext++ = 0x00650095; // Y_COUNT_3D y count1: 101 y count2: 149

 *pdwNext++ = 0x0001eee5; // DWIDTH1_3D dwidth1: 2.866

 *pdwNext++ = 0xfffd19a8; // DWIDTH2_3D dwidth2: -3.200

 *pdwNext++ = 0x08340000; // Z_3D Z val: 2100.000

 *pdwNext++ = 0x000d97b0; // DZ_MAIN_3D Z main: 13.593

 *pdwNext++ = 0x00085fc0; // DZ_ORTHO_3D Z orth: 8.374

 *pdwNext++ = 0x00000000; // V_3D V value: 0.000

 *pdwNext++ = 0x007f0000; // U_3D U value: 127.000

 *pdwNext++ = 0x0000820e; // DV_MAIN_3D DV main: 0.508

Copyright 1996 – Cirrus Logic Inc. 3-117 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 *pdwNext++ = 0x00000005; // DU_MAIN_3D DU main: 0.000

 *pdwNext++ = 0xffffbcb4; // DV_ORTHO_3D DV orth: -1.737

 *pdwNext++ = 0xffff8fe9; // DU_ORTHO_3D DU orth: -1.562

 // perspective textured, z-buffered polygon (dont-load-color: no need with
textures)

 //

 // NOTE: this example assumes a texture map has been previously loaded

 // into RDRAM that is in 5:6:5 mode and dimensions 128x128

 *pdwNext++ = 0x1003a015; // DRAW_POLY im: 003aTexLin TexPrsp Z-Buffer
DontLoadColor

 *pdwNext++ = 0x81f48000; // X_3D X value: 500.500

 *pdwNext++ = 0x00640000; // Y_3D Y value: 100.000

 *pdwNext++ = 0x00004923; // DX_MAIN_3D dx main: 0.286

 *pdwNext++ = 0x0000015e; // Y_COUNT_3D y count1: 0 y count2: 350

 *pdwNext++ = 0x0000923d; // DWIDTH1_3D dwidth1: 1.142

 *pdwNext++ = 0x00000000; // DWIDTH2_3D dwidth2: 0.000

 *pdwNext++ = 0x07d00000; // Z_3D Z val: 2000.000

 *pdwNext++ = 0x00000000; // DZ_MAIN_3D Z main: 0.000

 *pdwNext++ = 0x001dd8a0; // DZ_ORTHO_3D Z orth: 29.846

 *pdwNext++ = 0x007f0000; // V_3D V value: 127.000

 *pdwNext++ = 0x007f0000; // U_3D U value: 127.000

 *pdwNext++ = 0xffffa324; // DV_MAIN_3D DV main: -1.637

 *pdwNext++ = 0x00000000; // DU_MAIN_3D DU main: 0.000

 *pdwNext++ = 0xffff484c; // DV_ORTHO_3D DV orth: -1.282

 *pdwNext++ = 0xfffea699; // DU_ORTHO_3D DU orth: -2.651

 *pdwNext++ = 0x00000000; // D2V_MAIN_3D D2V mn : 0.000

 *pdwNext++ = 0x00000000; // D2U_MAIN_3D D2U mn : 0.000

 *pdwNext++ = 0x00000000; // D2V_ORTHO_3D D2V ort: 0.000

 *pdwNext++ = 0x000001d6; // D2U_ORTHO_3D D2U ort: 0.007

 *pdwNext++ = 0x00000086; // DV_ORTHO_ADD_3DDV oadd: 0.002

 *pdwNext++ = 0x00000000; // DU_ORTHO_ADD_3DDU oadd: 0.000

 *pdwNext++ = 0x68000000; // IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-118 Copyright 1996 – Cirrus Logic Inc.

3.7.9 Polygons Showing Filtered Texture Mapping

/***

*

* dl_poly_set4()

*

* draw 2 polygons one with linear texturing, one with filtered

* texture

*

**/

void dl_poly_set4(DWORD *pdwNext)

{

 DWORD tex_y_addr;

 // set y offset for texture buffer; x offset is set to 0

 tex_y_addr = (LL_State.BufTextures.Extent.top / 16) << 20;

 *pdwNext++ = 0x18001202; // WRITE_3D_REG reg: 4120 TX_CTL0_3D

 *pdwNext++ = 0x00000433; // - texture is 5:6:5, 128 x 128

 *pdwNext++ = tex_y_addr; // - tx_xybase reg = texture xy address

 *pdwNext++ = 0x1002800c; // DRAW_POLY im: 0028TexLin DontLoadColor

 *pdwNext++ = 0x815e8000; // X_3D X value: 350.500

 *pdwNext++ = 0x00320000; // Y_3D Y value: 50.000

 *pdwNext++ = 0xffff666e; // DX_MAIN_3D dx main: -1.400

 *pdwNext++ = 0x00c90031; // Y_COUNT_3D y count1: 201 y count2: 49

 *pdwNext++ = 0x0004665f; // DWIDTH1_3D dwidth1: 4.799

 *pdwNext++ = 0xfffee673; // DWIDTH2_3D dwidth2: -3.800

 *pdwNext++ = 0x00000000; // V_3D V value: 0.000

 *pdwNext++ = 0x007f0000; // U_3D U value: 127.000

 *pdwNext++ = 0x0000820e; // DV_MAIN_3D DV main: 0.508

 *pdwNext++ = 0x00000005; // DU_MAIN_3D DU main: 0.000

 *pdwNext++ = 0xffffe266; // DV_ORTHO_3D DV orth: -1.884

 *pdwNext++ = 0xffff6c39; // DU_ORTHO_3D DU orth: -1.423

 *pdwNext++ = 0x18001201; // WRITE_3D_REG reg: 4120 TX_CTL0_3D

 *pdwNext++ = 0x00040433; // - texture filter enable

 // - preserve 5:6:5

 // - 128x128

 *pdwNext++ = 0x1002800c; // DRAW_POLY im: 0028TexLin DontLoadColor

 *pdwNext++ = 0x82268000; // X_3D X value: 550.500

Copyright 1996 – Cirrus Logic Inc. 3-119 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

 *pdwNext++ = 0x00960000; // Y_3D Y value: 150.000

 *pdwNext++ = 0xffff666e; // DX_MAIN_3D dx main: -1.400

 *pdwNext++ = 0x00c90031; // Y_COUNT_3D y count1: 201 y count2: 49

 *pdwNext++ = 0x0004665f; // DWIDTH1_3D dwidth1: 4.799

 *pdwNext++ = 0xfffee673; // DWIDTH2_3D dwidth2: -3.800

 *pdwNext++ = 0x00000000; // V_3D V value: 0.000

 *pdwNext++ = 0x007f0000; // U_3D U value: 127.000

 *pdwNext++ = 0x0000820e; // DV_MAIN_3D DV main: 0.508

 *pdwNext++ = 0x00000005; // DU_MAIN_3D DU main: 0.000

 *pdwNext++ = 0xffffe266; // DV_ORTHO_3D DV orth: -1.884

 *pdwNext++ = 0xffff6c39; // DU_ORTHO_3D DU orth: -1.423

 *pdwNext++ = 0x68000000; // IDLE

}

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-120 Copyright 1996 – Cirrus Logic Inc.

3.7.10 Initial Width Instruction Modifier

3.7.10.1 Defining the Initial Span

There are two methods for initializing polygon drawing depending on the characteristics of the ini-
tial (top) span of the polygon. The CL-GD5464 has opcode modifiers for the following two cases:

Case-1 A polyon without an initial width (WIDTH1) parameter, nor an opposite width (WIDTH2)
parameter. An initial width bias (W1_BIAS) is provided from a 5-bit field in a CONTROL
register.

Case-2 A polyon with both WIDTH1 and WIDTH2 is supported (same as warp). The W1_BIAS
field is not used in this case.

3.7.11 Double/Multi Buffering

The CRTC_START_ADDR2 register, when written by either the PCI interface (Coprocessor
mode) or the WRITE_DEVICE_REGS (Display List mode), arms for transfer into the Primary
Screen Start Address registers (located at bits 20:19, CR1D; 18:16, CR1B, 15:8, CRC; 7:0, CRD)
at the next frame interval (at VBLANK). This is then loaded into the screen display refresh address
counters at VSYNC time. On the next active frame the new display start address is used to refresh
the screen. This address is used to refresh the screen until the next write to the Secondary Screen
Start Address register.

This register is a read/write. For software double-buffering, three methods can be used. In one
case the driver uses a software-polling mechanism looks like the following.

1) At the end of display list, a Load_Long_HIF writes the Secondary Screen Start Address register to the
new display buffer refresh address.

2) The next instruction of the display list then starts the clear Z-buffer (for 3D operation) BitBLT operation.
When completed, the CL-GD5464 goes to the IDLE state (goes to Coprocessor mode) by reading an
IDLE instruction.

3) The software driver reads the primary display address or polls for VSYNC. When either case is seen,
the software driver issues a BRANCH to the top of the new display list. This process repeats back to
step 1.

A second method uses a hardware interrupt on VSYNC. This eliminates polling of the CPU and
thus gives a better frame rate. Triple buffering works the same except that there is no wait to begin
drawing is necessary. There is a cleared (or initialized) buffer, ready to begin 3D writes without
disruption of the current display buffer.

A third and faster method uses the a WAIT instruction with the wait event being a flag in the
Laguna 3D control register. This flag is read/write by the host software driver. The bottom of the
display list instruction sequence is as follows:

1) At the end of display list, a WRITE_DEVICE_REGS writes the Secondary Screen Start Address regis-
ter. The hardware sets an ARM signal on the write and clears the ARM at VBLANK.

2) The next instruction of the display list then starts the clear Z-buffer (3D operation).

3) The next display list instruction is a _WAIT on FLAG¶ when TBD in the Control register is a ‘0’ (flag is ‘0’),
the display list execution waits for a one (flag is ‘1’). This is set by the software driver when the next dis-
play list buffer has been loaded into memory and is ready for display list execution.

4) When the wait instruction has a ‘1’ (flag is ‘1’) in the TBD Control bit, the next display list instruction is
called. The hardware clears (flag is ‘0’) the TDB Control bit on the completion of the wait on flag instruc-

Copyright 1996 – Cirrus Logic Inc. 3-121 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

tion. The next instruction is a _WAIT for NOT_ARM, if double-buffering or a BRANCH to the top of the
next display list sequence for triple-buffering. For the double-buffering operation, a BRANCH instruction
would follow the WAIT for NOT_ARM instruction. The NOT_ARM indicates that the new Secondary Start
Display Address register has been loaded into the Primary Start Display Address register and the hard-
ware is at a frame interval.

In the above process, the advantage is the elimination of waiting by the software driver to instan-
tiate the next branch to top of display list for drawing operation. This allows the CPU to continue
display list building without waiting for buffer switch or issue of a branch instruction as in case 1.

There is one caveat of the secondary address register write, there must be a window that disables
the write data to complete when the data is written during the same cycle where a VBLANK
occurs. This forms a guard band during the write and arm cycle. Also, if the Primary Start Address
register is read during this guard band, the read must be suspended till after the update (after
VBLANK) of the Primary Display Start Address register.

3.7.12 2D Display Lists

TBD

3.7.13 Z-Collision Detection

The Z-buffer can be used to detect the proximity of two rendered primitive objects considering all
three spatial dimensions. Figure 3-17 is a drawing of this method.

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-122 Copyright 1996 – Cirrus Logic Inc.

Figure 3-17. Z-Buffer Detect Method

In some application scenarios, it can be desirable to perform a more coarse comparison on the Z
values that constitute a collision. This assumes not all of the 16 bits of Z are significant for the pur-
poses of determining proximity. In addition, upper bits of Z can be allocated to identify objects (in
a limited object space) if these bits can be masked from the Z-comparison function. The
CL-GD5464 provides a means for defining the desired masking by separate masks for the upper
and lower bytes of Z. The CONTROL1_3D register at 4110h defines the masks for each of the
upper and lower halves of the Z value.

READ Z_COLLIDE_REG REGISTER

IS Z_COLLIDE_BIT SET?

START

SET Z_MASK_REG

CLEAN Z_COLLIDE_BIT

RENDER THE PRIMITIVE

YES

NO

Copyright 1996 – Cirrus Logic Inc. 3-123 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

During the interpolation, Z values from the buffer and interpolator are filtered through the two
masks. Then they are compared and if the values are the same, a collision is indicated. The user
can then check the collision Z value, and determine from the upper bits which object caused the
collision.

Both halves of the Z value are masked before the compare so that the user can:

1) Mask lower ‘n’ (0 to 8) bits to ‘0’, to allow decrease in Z resolution to assure that deep objects do not
pass through each other, but are caught on a larger scale.

2) Mask upper ‘n’ (0 to 8) bits to ‘0’, to allow for assigning IDs to objects. For example, there can be four
different objects at the same Z distance, each with different top two bits in Z (00, 01, 10, 11). They are
considered as in the same Z since those bits are masked out, but in the case of collision, buffered Z is
copied to ZCOLLIDE register so user can examine it and see the object number that (top two bits)
caused the collision.

3.7.14 2D BitBLT Examples

3.7.14.1 Host-to-Screen BitBLTs

For host-to-screen BitBLTs, the source XY location must yield a linear-physical address that is
aligned on a 32-bit (dword) boundary. The destination pitch must be a multiple of 8 bytes; however,
the destination BitBLT width can be on a pixel boundary.

3.7.14.2 Screen-to-Host BitBLTs

For screen-to-host BitBLTs, the source XY location must yield a linear-physical address that is
aligned on a 32-bit (dword) boundary. The source pitch and source BitBLT width must both be a
multiple of 8 bytes.

3.7.14.3 Host-to-Host BitBLTs

The host-to-host BitBLTs can be performed. It is undetermined as yet if they will be supported.

Following is a load ‘hif’ sequence for a 2D BitBLT.

// color fill BLT
// OP_OPBGCOLOR 22222222h #load fill color
// BLTDEF 1070h #op1 color source
// DRAWDEF 00CCh #rop - srccpy
// OP0_opRDRAM.pt.X 0h #result at 0
// OP0_opRDRAM.pt.Y 0h #result at 0
// BLTEXT_EX.pt.X 20h #extent x is 32
// BLTEXT_EX.pt.Y 20h #extent y is 32

// Load hif hif instruction
// | load hif | device | byte enables | stall | addresss | # params |

Table 3-77. Z-Value Masks

 15 8 7 0

Z-value affected Bits 15:8 Bits 7:0

Mask field from
CONTROL1_3D
register

Z-Hit Object Mask bits 31:24 Z-Hit Precision Maskbits 7:0

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-124 Copyright 1996 – Cirrus Logic Inc.

// OP_OPBGCOLOR 22222222h #load fill color

memory_write_long_word(32'h08000000,{`WRITE_DEVICE_REGS_OPCODE,`ENG2D,4'b000
0,13'h05E4,6'h01});
memory_write_long_word(32'h08000004,32'h22222222);

// BLTDEF 1070h #op1 color source

memory_write_long_word(32'h08000008,{`WRITE_DEVICE_REGS_OPCODE,`ENG2D,4'b001
1,13'h0586,6'h01});
memory_write_long_word(32'h0800000C,32'h10700000);

// DRAWDEF 00CCh #rop - srccpy

memory_write_long_word(32'h08000010,{`WRITE_DEVICE_REGS_OPCODE,`ENG2D,4'b110
0,13'h0584,6'h01});
memory_write_long_word(32'h08000014,32'h000000CC);

// OP0_opRDRAM.pt.X and Y 0h #result at 0,0

memory_write_long_word(32'h08000018,{`WRITE_DEVICE_REGS_OPCODE,`ENG2D,4'b000
0,13'h0520,6'h01});
memory_write_long_word(32'h0800001C,32'h00000000);

// BLTEXT_EX.pt.X and Y 20h #extent x is 32

memory_write_long_word(32'h08000020,{`WRITE_DEVICE_REGS_OPCODE,`ENG2D,4'b000
0,13'h0700,6'h01});
memory_write_long_word(32'h08000024,32'h00200020);

// Idle
memory_write_long_word(32'h08000028,{`IDLE_OPCODE,27'h000000});

3.7.15 Process Synchronization

READ_DEV_REGS allows synchronization between 3D operations and 2D operations by the abil-
ity to write a system memory semaphore within a display list.

Copyright 1996 – Cirrus Logic Inc. 3-125 September 1996

CL-GD546X Software Technical Reference Manual 3D PROGRAMMER’S GUIDE

3.7.16 CL-GD5464 3D Events

The following are the 3D events currently being considered. These generate some type of notifi-
cation, either interrupt, internal or external pin, or register bit state change.

CRT_VBLANK — CRT controller vertical blank
CRT_BANK — CRT controller bank switch used for double buffer
CRT_HBLANK — CRT controller horizontal blank
CRT_BEAM_EQ — CRT controller vertical count equal

2D_ENG_IDLE — 2D engine idle strobe to synchronize 3D and 2D requests, that is, BitBLTs.

AUTO_BLT_A — 2D engine auto-BitBLT signal A
AUTO_BLT_B — 2D engine auto-BitBLT signal B
AUTO_BLT_C — 2D engine auto-BitBLT signal C

Z_COMPARE — trigger event on Z compare
C_COMPARE — trigger event on color compare

3.7.17 Self Interrupts

TBD

3D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 3-126 Copyright 1996 – Cirrus Logic Inc.

	Table of Contents
	1. Overview
	2. 2D Programmer's Guide
	3. 3D PROGRAMMER’S GUIDE
	3.1 Architectural Overview
	3.1.1 System Block Diagrams
	3.1.2 Internal Architecture
	3.1.2.1 Host Interface
	3.1.2.2 2D/3D Engine

	3.2 3D Programming Model
	3.2.1 Direct Programming
	3.2.2 Coprocessor Indirect Programming
	3.2.3 Display List Programming
	3.2.4 Host Memory-Based Formats

	3.3 3D Rendering Overview
	3.3.1 Incremental Line-Drawing Algorithm
	3.3.2 Flat (Unshaded) Polygon
	3.3.3 Summary of Values Used for Flat Triangle
	3.3.4 Scaled Numbers
	3.3.5 Gouraud Shading
	3.3.6 X-Y Clipping
	3.3.7 Z-Buffering
	3.3.8 Color Transparency
	3.3.9 Lighting
	3.3.10 Saturation
	3.3.11 Alpha Blending
	3.3.12 Additional Notes on Lighting
	3.3.13 Data Path Equation
	3.3.14 Texture and Perspective Texture Mapping
	3.3.15 Quadrangles
	3.3.16 Lines and Points

	3.4 3D Memory Organization
	3.4.1 System Memory Space View of Frame Buffer Mem...
	3.4.2 System Processor (Across PCI Bus) View of th...
	3.4.2.1 Memory-Mapped I/O
	3.4.2.2 I/O-Mapped Registers

	3.4.3 System Memory Objects View from the CL�GD546...
	3.4.3.1 3D General System Memory Objects
	3.4.3.2 Virtual Memory Translation
	3.4.3.3 Physical Memory Addressing
	3.4.3.4 3D Display List Memory
	3.4.3.5 Z-Buffer and Color Map Buffers Mixed in Sy...
	3.4.3.6 Texture Memory Format in System Memory

	3.4.4 READ_3D_REGISTER — Multiple Commands View of...

	3.5 CL-GD5464 3D Instruction Set
	3.5.1 Instruction Summary
	3.5.1.1 Drawing Instructions
	3.5.1.2 Transfer Instructions
	3.5.1.3 Control Instructions
	3.5.1.4 Read/Write Register Instructions

	3.5.2 Instruction Field Tables
	3.5.2.1 STALL
	3.5.2.2 Drawing Instruction INSTR_MODIFIER Field
	3.5.2.3 TEST/WAIT Instruction EVENT_MASK
	3.5.2.4 READ/WRITE_DEV_REGS Instruction MODULE_SEL...
	3.5.2.5 DRAW Instructions Register Skip Controls

	3.5.3 Instruction Listings
	3.5.3.1 BRANCH
	Functional Description

	3.5.3.2 CALL
	Functional Description

	3.5.3.3 C_BRANCH
	Functional Description

	3.5.3.4 CLEAR
	Functional Description

	3.5.3.5 DRAW_LINE
	Functional Description

	3.5.3.6 DRAW_POINT
	Functional Description

	3.5.3.7 DRAW_POLYGON
	Functional Description

	3.5.3.8 IDLE
	Functional Description

	3.5.3.9 IDLE_INT
	Functional Description

	3.5.3.10 Interrupt Enable Control
	Functional Description

	3.5.3.11 NC_BRANCH
	Functional Description

	3.5.3.12 NOP
	Functional Description

	3.5.3.13 READ_DEV_REGS
	Functional Description

	3.5.3.14 RETURN
	Functional Description

	3.5.3.15 RETURN_INT
	Functional Description

	3.5.3.16 TEST
	Functional Description

	3.5.3.17 WAIT
	Functional Description

	3.5.3.18 WRITE_DEST_ADDR
	Functional Description

	3.5.3.19 WRITE_DEV_REGS
	Functional Description

	3.5.3.20 WRITE_PFCTRL_REG
	Functional Description

	3.5.3.21 WRITE_REGISTER
	Functional Description

	3.6 3D Register Header Files
	3.6.1 trm.h
	3.6.2 l3struct.h
	3.6.3 l3types.h
	3.6.4 modemon.h

	3.7 Programming Examples
	3.7.1 CL�GD5464 Setup
	3.7.2 Z-Buffered Points
	3.7.3 Alpha-Blended Points
	3.7.4 Gouraud-Shaded Lines
	3.7.5 Gouraud-Shaded, Dithered Polygon
	3.7.6 Polygons with Z-Buffering, Flat-Shading, and...
	3.7.7 Polygon Showing Z-Buffering, Stippling, and ...
	3.7.8 Polygons Showing Texture Mapping
	3.7.9 Polygons Showing Filtered Texture Mapping
	3.7.10 Initial Width Instruction Modifier
	3.7.10.1 Defining the Initial Span

	3.7.11 Double/Multi Buffering
	3.7.12 2D Display Lists
	3.7.13 Z-Collision Detection
	3.7.14 2D BitBLT Examples
	3.7.14.1 Host-to-Screen BitBLTs
	3.7.14.2 Screen-to-Host BitBLTs
	3.7.14.3 Host-to-Host BitBLTs

	3.7.15 Process Synchronization
	3.7.16 CL�GD5464 3D Events
	3.7.17 Self Interrupts

	4. Video Programming
	5. System Operation
	6. BIOS Specification
	Index
	Sales Offices/Company Information
	Reader Response Card

