

2

2D Programmer’s Guide

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-2 Copyright 1996 – Cirrus Logic Inc.

2. 2D PROGRAMMER’S GUIDE

2.1 2D Graphics Engine

The 2D graphics engine performs BitBLT (bit block transfer) operations on the frame buffer. During
a BitBLT operation, a destination array of pixels in the frame buffer are replaced by a pixel-by-pixel
combination of data from a source array of pixels in the frame buffer or host memory. These pixels
are also replaced with data from a destination array of pixels in the frame buffer and data from a
pattern. This is shown in Figure 2-1.

Figure 2-1. 2D Graphics Engine BitBLT

The pixel-by-pixel combination (called raster operation or ROP) is one of the 256 possible combi-
nations of the source, data, and pattern using the NOT, OR, XOR, and AND logical operations.
The pattern is an 8

×

 8 color or monochrome pattern, or a solid color.

The 2D engine is programmed by Memory-Mapped registers that define drawing operations and
the various parameters required for those operations. As shown in Figure 2-2, it consists of a con-
trol unit, a pixel path, and a frame buffer.

DESTINATION
RECTANGLE

SOURCE
RECTANGLE

FRAME BUFFER

PATTERNROP

Copyright 1996 – Cirrus Logic Inc. 2-3 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

Figure 2-2. 2D Graphics Engine Model and Data Flow

HOST
INTERFACE

FOREGROUND

BACKGROUND

SRAM 1

OP1

SRAM 2

OP2

SRAM 0

OP0

MONOCHROME TO COLOR CONVERTERS

PHASE ALIGNMENT

IMMEDIATE
REGISTERS

GENERAL
REGISTERS

BITMASK
RASTER OP UNIT TRANSPARENCY UNIT

FIFO

WRITE
ENABLE

FIFO

CONTROL UNIT

PIXEL PATH

FRAME BUFFER

 COLOR

 COLOR

FRAME BUFFER

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-4 Copyright 1996 – Cirrus Logic Inc.

The control unit contains the immediate and general registers, the drawing control and the com-
mand/data FIFO. The pixel path contains the three operand fetch units (OFU0, OFU1, OFU2), the
ROPs unit, the transparency control, and the pixel FIFO. The frame buffer consists of 1, 2, 4, or 8
Mbytes of Rambus RDRAM memory.

Writes to the immediate registers take effect immediately and do not go through the write FIFO.
These are used to read 2D engine status and write general control information. Writes to the gen-
eral registers are queued through the 25-entry write FIFO and are used to set drawing parameters
and initiate drawing operations. During a BitBLT operation, color pixel data is loaded into SRAM0.
Color and/or monochrome pixel data is loaded into SRAM1 and SRAM2. Monochrome data is
converted to color using the foreground and background color registers. Color pixel data is aligned
with the destination. Then the three operands are combined in the ROPs unit to form the output
pixel data that can be stored in the frame buffer, sent to the host or stored in one SRAM. If pixel
transparency is enabled, SRAM2 is used as the transparency mask. For monochrome masks, the
output pixel is written if the corresponding bit in SRAM2 is ‘1’. For color masks, the output pixel is
written if the corresponding pixel in SRAM2 compares with the Background color. (The compari-
son can be programmed to be ‘equal’ or ‘not-equal’.) SRAM0 is typically the destination operand,
SRAM1 is typically the source operand, and SRAM2 is typically the pattern operand.

2.1.1 2D Frame Buffer

The 2D frame buffer is organized as a rectangular array of packed pixels, with pixel ‘0,0’ at the
upper left-hand corner and pixel ‘xmax,ymax’ at the lower right-hand corner. A rectangular portion
of the frame buffer (the display rectangle) is visible on the display device. In the upper left-hand
corner is pixel ‘xs,ys’ and in the lower right-hand corner is pixel ‘xe,ye’ (0

≤

 xs

<

 xe

≤

 xmax, 0

≤

 ys

<

 ye

≤

 ymax). The display rectangle is shown in relation to the frame buffer in Figure 2-3. The dis-
play rectangle is typically aligned to the upper-left corner of the display buffer (xs = 0, ys = 0), but
can be positioned anywhere on the frame buffer surface. Pixel sizes of 8, 16, 24, and 32 bits are
supported. Pixel addresses given to the 2D engine are always specified in two dimensional ‘x,y’
coordinates.

Figure 2-3. 2D Frame Buffer

DISPLAY
RECTANGLE

FRAME BUFFER

INCREASING x

INCREASING y

PIXEL ‘xs,ys’

PIXEL ‘0,0’

PIXEL ‘xe,ye’

PIXEL ‘xmax,ymax’

Copyright 1996 – Cirrus Logic Inc. 2-5 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

2.1.2 Bit Swizzle

Bit swizzling is the end for end reversal of bits in a byte. For example, the swizzle of 10001101b is
10110001b. In some cases, monochrome glyphs (fonts or brushes) are presented to the program-
mer in a format that requires bit swizzle prior to being color expanded into the frame buffer. The
CL-GD546X provides a mechanism for implementing bit swizzle during host-to-frame-buffer BLTs.
Setting the CONTROL.SWIZ bit during a host-to-frame-buffer BLT causes the bytes within the
HOSTDATA dwords to be swizzled. The byte order within the dwords remains the same. If byte-
order reversal is also required, write the HOSTDATA through register memory aperture two or
three.

2.1.3 Patterns

Patterns can be thought of as an ink-stamp on a roller. As the roller is moved left to right, the image
is repeatedly copied onto the destination. At the end of a row, the roller is moved down one image
and the process is repeated. Patterns are used when the source for a rectangular block of pixels
repeats in x and y. This is achieved by having a small source rectangle repeatedly filling up the
destination. When the left end of the pattern is reached during the BitBLT to the destination, the
source pointer is reset to the right end of the pattern. When the bottom of the pattern is reached,
the source pointer is reset to the top of the pattern. All patterns supported by hardware are 8

×

8
pixels. The point inside the pattern that is anchored to the upper-left corner of the display can be
selected using the PATOFF register.

Conceptually, patterns should be thought of as 8

×

 8 square pixel regions that can be tiled onto
the screen. The upper-left corner of the pattern tile is aligned to the upper-left corner (0,0) of the
frame buffer. The alignment is adjustable to any point within the tile by setting the x, y values in
the PATOFF register.

Patterns are not stored in rectangular format in the frame buffer. They are stored linearly. A mono-
chrome (1 bpp) pattern is stored in a single qword (64 bits). An 8-bpp color pattern is stored in 64
sequential bytes. A 16-bpp color pattern is stored in 128 sequential bytes. 24-bpp and 32-bpp
color patterns are stored on two adjacent lines with half the pattern on each line. The first line con-
tains the top four lines of the pattern and the second line contains the bottom four lines. The first
line of a 24- or 32-bpp color pattern must be on an even scanline address in y.

For optimal performance, the software should align patterns to tiles. Crossing tile boundaries puts
a penalty on memory performance. The architecture allows any pattern to fit within a single tile
and the programmer concerned with optimal performance is encouraged to respect this con-
straint. See Chapter 5, “System Operation” for more information.

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-6 Copyright 1996 – Cirrus Logic Inc.

2.1.4 Monochrome-to-Color Expansion

Monochrome bitmaps can be converted to foreground and background colors, or to all ones and
all zeroes (white on black). Strings of ones and zeroes are fed into the ROP unit and are output
respectively as foreground color and background color. Source (OP1) or pattern (OP2) operands
can convert monochrome pixel data to color. Typical use of monochrome-to-color conversion is for
transferring font maps to characters on the screen, or for hatched brushes.

Foreground and background colors are selected by placing the appropriate values in the
OP_opFGCOLOR and OP_opBGCOLOR registers and turning off DRAWDEF.SATn. With
DRAWDEF.SAT.n on, the foreground color is all ones (

−

1) and the background is all zeroes (typi-
cally white on black). Refer to the

Laguna VisualMedia



 Accelerators Family — CL-GD546X Vol-
ume I (Hardware Reference Manual, Second Edition, September 1996)

for register information.

2.1.5 Transparency

Two types of transparencies can be generated; one using a monochrome input data stream, and
another using a Color Comparison register. When transparency is turned on, OP2 fetches trans-
parency mask pixels and makes the decision whether or not to enable writes to the destination
based on the compare operation. OP2 can still be used in the raster operation.

Monochrome transparency causes the pixels mapped from a one to be written with the result of
the current raster operation. This causes pixels mapped from a zero to retain their prior value. A
typical use of this type of operation puts foreground solid colored fonts over an arbitrary existing
background.

Color transparency compares an incoming data stream with a fixed OP_opBGCOLOR value on a
pixel-by-pixel basis. It then writes the ROP result or retains the destination pixel based on the
result of the comparison. Transparency masks can be aligned with source data, destination data,
or any other region. Source-aligned color transparency allows the programmer to simulate chroma
keying (also known as blue screening).

2.2 2D Graphics BitBLT Operations

This section guides the system programmer in the most effective use of the CL-GD546X 2D
graphics engine for implementing display drivers, and special graphics and video application soft-
ware. Methods for implementing typical operations are discussed and supplemented with tested
examples.

Copyright 1996 – Cirrus Logic Inc. 2-7 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

2.2.1 Commonly Used BitBLT Control Registers

Table 2-1 illustrates the fields in the three most-used 2D Engine Control registers in the
CL-GD546X.

Table 2-1. Primary 2D Engine Control Registers

BLTDEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

YDir RESult
OP1=

OP2

OP0,

DST

OP1,

SRC

OP2,

PAT

Dn =0

Up =1

FB =1

HO =2

SMO =4

SM1 =5

SM2 =6

SM1:2 =7

Off =0

On =1

SM =0

FB =1

Pattern

Off =0

On =1

Color =0

Mono =1

Fill =1

SM =0

FB =1

HO =2

Fill =3

Pattern

Off =0

On =1

Color=0

Mono=1

Fill =1

SM =0

FB =1

HO =2

Fill =3

DRAWDEF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mono Saturate
Pixel

Tag
Transparency ROP

OP1

Off =0

On =1

OP2

Off =0

On =1

GRX=0

Video=1

Opera-
tion

BG(=)
=0

FG(!=)
=1

Switch

Off =0

On =1

Raster Operation Code

00.FF

LNCNTL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

YUV 4:1:1

Average Con-
trol

Chain Auto Graphics Pixel Format
Y_SH

RINK

X_SH

RINK

Y_INT
ERPO-
LATE

X_INT
ERPO-
LATE

UV
HOLD

Off =0

On =1

LOW

PASS

Off =0

On =1

Off =0

On =1

BLT=0

Resize

=1

8 bpp CLUT =0

16 bpp 1:5:5:5 =1

16 bpp 5:6:5 =2

YUV 4:2:2 =3

32 bpp aRGB = 4

24 bpp RGB = 5

AccuPak = 6

Reserved = 7

Shrink

=1

Stretch
= 0

Shrink
=1

Stretch
=0

Off =0

On =1

Off = 0

On =1

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-8 Copyright 1996 – Cirrus Logic Inc.

2.2.2 BitBLT Programming Overview

Standard BitBLT operations are used for moving rectangular blocks of pixels from one location to
another. Source data comes from the Host, Frame Buffer, or operand SRAM caches. Independent
of pixel size, the result data is written to the Host, SRAM, or the Frame Buffer as color (8, 16, 24,
32 bpp) data or byte data. Source and destination extents are the same with the exception of pat-
tern sources, which are cyclic on eight pixel by eight-line boundaries. Stretch and shrink BitBLTs
do not have the same source and destination extents. All 256 three operand raster operations are
performed on any combination of the three source locations. Monochrome data, color data and
transparency masking can all be combined in a single BitBLT operation. BitBLT programmers
should carefully read the detailed descriptions of the 2D Graphics Engine registers, refer to the

Laguna VisualMedia



 Accelerators Family — CL-GD546X Volume I (Hardware Reference Man-
ual, Second Edition, September 1996)

for register information.

Most graphics registers, when written in the CL-GD546X, are posted through the 2D engine com-
mand queue, which has an effective depth of 25-dword entries.

In PCI systems, checking the queue depth is not required since the bus architecture supports
retries and waits while the queue is full.

Immediate registers are not posted through the queue and checking QFREE is never required.
These registers are typically device initialization registers that are not used during a BitBLT oper-
ation. Each register write consumes one, two, or three entries in the queue. Each write uses one
entry per 16 bits (word), plus one extra entry if it is a command.

BLTEXT registers consume three entries: two for the X/Y, and one for the implied command.
Immediate registers bypass the queuing mechanism and consume no entries. The programmer
does not have to check that a BitBLT operation is completed before programming the next opera-
tion. This is due to the queueing mechanism and the double buffering of internal registers in the
CL-GD546X. The queue allows host and BitBLT operations to execute in parallel, increasing the
overall system throughput.

Typically, a register is written as a 32-bit dword or portions of it are written as 16-bit WORDs. The
programmer can choose to write 16-bit halves of the register when it is the only portion of an X/Y
address or extent that is changing between operations in an inner loop. This is a convenient opti-
mization for text operations when the Y extent remains constant for a long sequence of operations.

In addition to triggering the operation, BLTEXT registers set the extents of the BitBLT. Writing to
one 16-bit half of the BLTEXT register sets an X or Y value. Writing to the other 16-bit half sets the
corresponding Y or X value and starts the BLT operation. Be careful to write these register halves
in the correct order so that the BLT is started by the second write, not the first. The register descrip-
tions for these registers indicate which half of the register is the triggering write. BLTEXT registers
are provided for initiation of the operation on X write (_XEX) or on the Y write (_EX).

Prior to each BitBLT operation, several registers are set up. The four most important registers are
BITMASK, BLTDEF, LNCNTL, and DRAWDEF. The bit assignments of the BLTDEF, LNCNTL, and
DRAWDEF registers appear in Table 2-1. Incorrect setup of these registers accounts for a large
share of the problems that a programmer encounters. After these four registers are set up, the
OP_opRDRAM Pointer registers are set up to point to source and destination operands and result
locations. Following initialization of the Control registers, a ‘command’ BLTEXT register is written.
It contains the destination X and Y extents and causes the desired operation to proceed.

Copyright 1996 – Cirrus Logic Inc. 2-9 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

The first register to consider when setting up for a BitBLT is the BITMASK register. It should be
set to FFFFFFFFh to enable writing to all bits. Each bit in the BITMASK enables (1) or masks (0)
the write to the corresponding bit that it aligns with during the memory write. All 32 bits in the BIT-
MASK register are used, regardless of the width of pixels in the frame buffer. In 8 bits-per-pixel
frame buffers, the 8-bit BITMASK must appear four times throughout the entire 32-bit register. In
16-bit systems, it appears twice. In 32-bit systems, one copy of the mask fills the 32-bit register.
In 24 bits-per-pixel systems, BITMASK cycles in and out of alignment if any value other than
FFFFFFFFh is used. This is because BITMASK is effectively dword aligned. Many drivers can be
written to set BITMASK to FFFFFFFFh at initialization and do not need to be changed again.

The next register to set is the BLTDEF register. It has fields that specify the fetching properties of
the Operand Fetch Units. The OP1 and OP2 fields are set to fetch data from the frame buffer, the
host, or SRAM. Additionally, the fetch field can be set up for a ‘fill’ fetch, which always supplies the
background color. Color or monochrome source data and pattern fetching is selected in the OP1
and OP2 fields. The OP0 fetch is selected from either SRAM or the frame buffer. The result of the
operation is then selected by the RES field and can be set to the frame buffer, host, or SRAM.
SRAM destinations are SRAM0, SRAM1, SRAM2, or SRAM1 and SRAM2 combined. Next, the Y
direction for BitBLTs is set to either up the screen (decreasing Y) or down the screen (increasing
Y). Finally, the BD_Same field should be set or cleared.

Setting BD_Same (bit 11) causes OP1 and OP2 data to be fetched based solely on OP2 operand
pointers. OP1 X registers need to be set to the same value as OP2 X registers in this mode. When
OP1 and OP2 use the same data, it is a useful optimization for reducing the amount of data that
needs to be fetched for an operation. For example, host-to-frame-buffer transparent text, with iden-
tical font and transparency masks using OP1 for monochrome-to-color expansion and OP2 for
transparency control, is an excellent use of BD_Same.

Overlapping BitBLTs that move down (increasing Y) the screen are performed with BLTDEF.YDIR
set to up, and with the source and destination pointers anchored to the lower left corners of the
rectangles. Overlapping BitBLTs that move up the screen are performed with BLTDEF.YDIR set to
down, and with the source and destination pointers anchored to the upper left corners. In addition,
the case of a purely horizontal, left to right BitBLT must be considered. Unless it is broken up into
strips or cached through an intermediate buffer by software, this BitBLT results in vertical stripes.

The next register to set up is the DRAWDEF register. The three operand raster operation is set in
the ROP field. Transparency (using OP2) is enabled by setting the transparency switch on and the
type. The compare operation (foreground or background) is selected by the transparency opera-
tion field. The Pixel Tag field is used in 9-bit RDRAM systems to control the setting or clearing of
the ninth bit during the BitBLT. If set, The ninth bit indicates to the back-end that the associated
pixel is video and must be interpreted using the video format and depth fields. Finally, the mono-
chrome saturate fields must be set or cleared. If OP1 and/or OP2 are fetching monochrome data
and saturate is on, then ones are converted to all ones (FF, FFFF, FFFFFFFF) and zeroes are
expanded to zeroes. If saturate is off, then monochrome data is converted to the foreground and
background colors.

To perform a logical ternary raster operation (ROP), the DRAWDEF ROP field must be set to the
8-bit ROP code. This is provided by the application or some layer of software above the driver. The
ROP code is computed by applying the desired logical operations to the operand constants, which
are OP0 = AAh, OP1 = CCh, and OP2 = F0h. For example, OP1 data is copied to the result using
code CCh, or OP0 data is ANDed to OP1 data using a ROP code of (OP0 and OP1) = (AAh and
CCh) = 88h. A more complex example is a ‘patterned stencil BitBLT’ in which a pattern is copied
to a rectangular region in the frame buffer through a monochrome stencil bitmap. Let the zeroes

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-10 Copyright 1996 – Cirrus Logic Inc.

in the stencil represent the stencil holes through which the pattern is applied, and let ones repre-
sent solid areas. This prevents the underlying data in the frame buffer from being changed. Make
OP0 the existing destination pixel, make OP1 the monochrome stencil source, and make OP2 the
pattern source. Where OP1 is a one, the result bit is taken from OP0. Where OP1 is a zero, the
result is taken from OP2. In this example, the ROP code is computed as listed below.

OP1 CC 11001100 ones select OP0,
zeroes select OP2

OP0 AA 10101010

OP2 F0 11110000

--- -- --------

RES B8 10111000

ROP code B8 is represented in reverse polish Boolean as PSDPxax and in algebraic notation as
PAT^SRC&(DST^PAT), where P = PAT = OP2, S = SRC = OP1, and D = DST = OP0.

The DRAWDEF and BLTDEF registers are written as a single 32-bit operation or as two 16-bit
operations. Typically, the programmer composes the contents of a DRAWBLTDEF register setting
for a given operation by combining various bitmap macros at compile time, or by masking the reg-
isters at run time to specify the BitBLT operation. Then, the programmer moves the 32-bit dword
to the hardware. Some optimization of the driver is realized by leaving the DRAWDEF and BLT-
DEF registers in a standard configuration at the end of every operation. This allows subsequent
operations to skip setting these registers. The most common setting for these registers is often
frame-buffer-to-frame-buffer source copy using color source and destination data types.

If the BitBLT is doing monochrome-to-color conversion, set the Foreground and Background Color
registers must be set. In 8 and 16 bits-per-pixel, the colors are replicated throughout the register.
An 8-bit-per-pixel color of 37h is loaded as 37373737h, while a 16-bit-per-pixel color of 6A7Fh is
loaded as 6A7F6A7Fh.

The LNCNTL register, for normal BitBLTs, should have the auto field set to ‘0’, and the chain field
set to off. If the frame buffer contains mixed-pixel formats, set the graphics pixel format field. The
LNCNTL register is discussed in detail in the Chapter 4, “Video Programming”.

After BITMASK, BLTDEF, DRAWDEF, and LNCNTL registers are set up, the operand pointers for
fetching and storing the data need to be set up. If OP1 or OP2 are fetching monochrome data from
the frame buffer, then OP{1|2}.opMRDRAM is used to point to the source data in the frame buffer.
The Y portion (upper 16 bits) of the register contains the line-number index and the X portion
(lower 16 bits) contains the bit index to the monochrome data. For instance, a monochrome glyph
cached at byte 3 on the second line has a Y value of ‘1’ and a X value of ‘24’ loaded into the OP
pointer. If monochrome data is fetched from SRAM, then the OP{1|2}_opMSRAM pointers should
point to the bit offset in the appropriate SRAM. Monochrome data, fetched from SRAM, wraps
around at the end of SRAM and continues fetching at the beginning. If monochrome data is
fetched from the host, the phase alignment of the data (within the dwords fetched from the host),
is indicated by the value programmed into the OP{1|2}_opMRDRAM register. For this operation,
these registers serve the secondary purpose of phase control, which is not clearly indicated by
their name.

Copyright 1996 – Cirrus Logic Inc. 2-11 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

Color data from the frame buffer is pointed to by the OP{0|1|2}_opRDRAM registers. Color data
from the SRAM is pointed to by the OP{0|1|2}_opSRAM registers. This data is cyclic in that at the
end of SRAM, the internal pointers cycle to the beginning of SRAM. Color data from the host is
phase aligned by using the OP{1|2}_opRDRAM registers in a manner similar to the monochrome
case. The registers point to the byte alignment (0, 1, 2, 3) within the dwords loaded from the host.

The OP0_opRDRAM register points to the result X/Y location in the frame buffer. The
OP0_opRDRAM.pt.X register points to the result offset in SRAM. OP0_opRDRAM.pt.X indexes
into the particular SRAM cache selected in the BLTDEF result field.

Operand Pointer registers do not read back with the same values that are written to them. The
programmer must not make the assumption that they do. Color RDRAM pointers are byte con-
verted on write and read back as byte offsets. Monochrome pointers (MRDRAM and MSRAM)
read back as monochrome pointers. MRDRAM pointers are interpreted by the hardware as byte
pointers for color operands and as bit pointers for monochrome operands. The Y part of pointers
undergoes no conversion (reference the Graphics Accelerator Registers Chapter 10 for a detailed
description).

Pattern data is always 8 lines by 8 pixels and anchored to the frame buffer (0,0) location. If OP1
and/or OP2 fetch patterned data, then the PATOFF register is set to align the pattern tile to the
upper-left hand corner of the frame buffer. PATOFF contains X and Y fields that index into the pat-
tern and define the point of alignment. Once a pattern alignment is set, all subsequent pattern Bit-
BLTs are mutually aligned within the frame buffer. PATOFF applies to OP1 and OP2 concurrently.
If two patterns are used and the programmer needs different relative alignments, then one pattern
must be rotated in software prior to caching.

2.2.3 Monochrome-to-Color Conversion BitBLTs

Monochrome bitmaps consisting of one bit for each pixel are converted to foreground and back-
ground colors, or to all zeroes and all ones (black and white) during a monochrome BitBLT oper-
ation. Strings of ones and zeroes are fed into the graphics accelerator 2D engine and are output
respectively as foreground color and background color. Source (OP1) or Pattern (OP2) operands
fetch and convert monochrome bit streams to color. Typical use of monochrome-to-color conver-
sion transforms font maps to characters on the screen or for painting two-color hatched brushes.

The saturate fields in the DRAWDEF register are used to select monochrome-to-color conversion
(saturate off), or to select monochrome conversion to all ones and all zeroes (saturate on). Fore-
ground and background colors for color converted bitmaps are selected by placing the appropriate
values in the OP_opFGCOLOR and OP_opBGCOLOR registers and turning DRAWDEF.SATn off.
Color values in the dword FGCOLOR and BGCOLOR registers are expanded to fill the full 32 bits
in 8- and 16-bit cases. In a 24-bits-per-pixel case, the color value is loaded into the lower 24 bits
of the register.

Monochrome-to-color conversion BitBLTs are sourced from the host, frame buffer or SRAM, and
can use host, frame buffer, or SRAM as the result. Monochrome BitBLTs are combined with trans-
parent BitBLTs to produce foreground only fonts. Monochrome data can be stretched in a two-step
operation by first performing a monochrome saturate BitBLT, and then performing a replicate
stretch on the result. Monochrome data is used as pattern source data, making for very efficient
storage of two-color brushes or hatching patterns.

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-12 Copyright 1996 – Cirrus Logic Inc.

2.2.4 Transparent BitBLTs

Both monochrome and color bitmaps are used as transparent masks. The OP2 operand fetch unit
fetches data and performs the transparent compare operation. It enables or masks write opera-
tions to the frame buffer based on the compare result.

Monochrome transparency operations are performed by enabling transparency and setting the
transparent operation to foreground or background in DRAWDEF. Zero (background) bits in the
monochrome mask suppress writes to their associated pixels in the frame buffer. Ones enable
writes to the frame buffer, if monochrome foreground transparency is selected. If background
transparency is selected, ones in the monochrome mask suppress writes to their associated pix-
els in the frame buffer and zeroes enable writes. The FGCOLOR and BGCOLOR registers do not
need to be set as a part of monochrome transparency setup.

Color transparency is implemented by pointing OP2 to a color region, setting BGCOLOR to the
transparent compare color, and selecting equal or not equal as the transparent compare opera-
tion. A typical operation is chroma keying or blue-screening where picture is rendered on top of a
constant colored background. The constant background color is put into the BGCOLOR register
as the compare color. The operation is then set to equal. If an OP2_Copy ROP (0F0h, PATCOPY)
is selected and transparency is enabled, then the picture on the ‘blue-screen’ background copies
to the destination region of the screen while the background is untouched. This is useful for ani-
mation provided that a save-under and restore operation are associated with the transparent Bit-
BLT.

Operand fetch unit one fetches data written to the frame buffer. Operand fetch unit two selects data
from a distinctly different monochrome transparency mask located elsewhere in off-screen mem-
ory. This method is used to mask video or graphics data into an arbitrarily shaped region. Mono-
chrome bitmasking is used to implement occlusion of normally rectangular video regions by
associating an equal-sized bitmask with the region, and enabling or disabling writes to the
occluded video region by careful manipulation of the transparency bitmask.

Transparent BitBLTs are combined with color or monochrome patterned data and are used with
any of the 256 available ROPs. Align off-screen transparent font caches with memory to minimize
tile boundary crossings to minimize RDRAM page breaks and to optimize fetching performance.

2.2.5 Pattern BitBLTs

Patterns are used when the source for a rectangular block of pixels repeats in X and Y. This is pro-
duced by having a small source rectangle that is used repetitively to fill up the destination. When
the left end of the pattern is reached during the BitBLT to the destination, the source pointer is
reset to the right end of the pattern. When the bottom of the pattern is reached, the source pointer
is reset to the top of the pattern. Patterns are 8

×

 8 square pixel regions that are tiled onto the
screen. The upper-left corner of the pattern tile is aligned to the upper-left corner (0,0) of the frame
buffer. The alignment is adjusted to any point within the tile. This is done by setting the X, Y values
in the PATOFF register. Pattern data can be monochrome or color sourced from the host.

Align dword for patterns caches stored in off-screen frame buffer memory. Pattern loading from
the host is simplified by using the bpp independent MBitBLT, which is discussed later in this sec-
tion.

Copyright 1996 – Cirrus Logic Inc. 2-13 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

Patterns are not stored in rectangular format in the frame buffer, they are stored linearly. A mono-
chrome (1 bpp) pattern is stored in a single qword (64 bits). An 8-bpp color pattern is stored in 64
sequential bytes on a single line. A 16-bpp color pattern is stored in 128 sequential bytes, also on
a single line. 24-bpp and 32-bpp color patterns are stored on two adjacent lines with half the pat-
tern on each line. The even line contains the top half of the pattern. The next odd line contains the
bottom half. Monochrome pattern maps are converted to foreground and background color. Oth-
erwise they are saturated to black and white depending on the settings of the DRAWDEF.Saturate
fields.

Both operand one (OP1) and operand two (OP2) can fetch pattern data from any source. OP2
can additionally perform transparent compare operations on pattern data.

For optimal performance, patterns should be tile-aligned. Crossing tile boundaries puts a penalty
on memory performance by causing RDRAM page breaks. The architecture allows any pattern to
fit within a single tile and the programmer, striving for optimal performance, is encouraged to take
advantage of this feature. Monochrome, eight and sixteen bits-per-pixel patterns fit in a single
SRAM cache, whereas 24- and 32-bits-per-pixel patterns are fetched multiple times yielding lower
performance due to repeated pattern fetching.

2.2.6 Host BitBLTs

The BitBLT engine can source data from the host and write data to the host. Once a host BitBLT
is initiated, host data must be written or read under program control, since it is not a bus master
device.

Host BitBLTs are phase-aligned so that the fetched or stored data is dword-aligned. Since aligned
X86-dword fetches are executed more quickly than non-aligned fetches, alignment yields higher
performance. Given a non-aligned pointer to data on the host, the programmer can choose the
next lower dword aligned address and use the OP{0|1|2}_opMRDRAM registers to select the byte
offset (phase) within the dword where the first pixel begins. The OP{1|2}_opMRDRAM registers
are used for host sourced BitBLTs to control the phase alignment of data within the dwords written
to HOSTDATA, following the BLTEXT. The programmer should set OP{1|2}_opMRDRAM.pt.X to
(0, 1, 2, 3) to select the proper phase of alignment for host-sourced BitBLTs. Host-destination Bit-
BLTs operate in a similar manner, giving the programmer the ability to select the phase within
qwords in the frame buffer. The number of host destination dwords is always a multiple of two. The
CL-GD546X only supplies qwords for host destination BitBLTs. The programmer should set
OP0_opMRDRAM.pt.X to (0, 1, 2, 3) to select the proper phase alignment for host destination Bit-
BLTs. Phase-aligning host BitBLTs is strictly a performance enhancement. If it is not chosen, exer-
cise caution and set the phase pointers to zero. This is important since expected data may not be
aligned, and the number of dwords to supply may be calculated incorrectly.

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-14 Copyright 1996 – Cirrus Logic Inc.

BitBLTs to and from the host are performed by setting up the OP pointers, the phasing pointers
described earlier, the Control registers (BLTDEF, DRAWDEF), and commanding the BitBLT by the
BLTEXT registers. Care must be taken in properly calculating the number of HOSTDATA dwords
to read or write. The general formula for the number of HOSTDATA_dword writes is:

Equation 2-1

The general formula for the number of HOSTDATA_dword reads is:

Equation 2-2

where

H

is the height in rows (scanlines) of the BitBLT.

W

is the width in pixels of each row and Bytes PerPixel = 1 (8 bpp), 2 (16 bpp), 3 (24 bpp), and 4 (32 bpp).

In 32-bpp modes only, the above formula can be simplified to H

×

 W.

The RDQUEUE field in the STATUS register is a ‘1’, if data is available for the host to read. The
Swizzle bit in the CONTROL register is set to reverse the bit order within bytes during Host Bit-
BLTs. This is useful for reversing the direction of font maps that are provided ‘backwards’ to the
software. Be careful not to upset the state of other bits in the CONTROL register when program-
ming the Swizzle bit.

2.2.7 Byte BitBLTs (MBitBLTs)

Byte BitBLTs are available at all pixel depths to simplify off-screen memory management, making
large parts of typical drivers bit-per-pixel independent. Byte BitBLTs are also called monochrome
BitBLTs or MBitBLTs, although they are not monochrome BitBLTs. Without MBitBLTs, the require-
ment to dword-align patterns in off-screen memory (while in packed 24-bpp formats); would be
problematic since not all pixel X pointers point to dword-aligned boundaries.

To perform a MBitBLT, set up the BLTDEF and DRAWDEF registers as usual. Next, set up the
OP{0|1|2}_opMRDRAM pointers with byte offsets. Finally, command the BitBLT extents with MBL-
TEXT registers. The MONOQW register must be set to the number of qwords that encompass the
X extent of monochrome data (MONOQW = (Number_of_Bytes + 8) / 8).

H
W BytesPerPixel 3 PhaseInBytes+ +×

4
-- 

 ×

H
W BytesPerPixel 7 PhaseInBytes+ +×

8
-- 

 ×

Copyright 1996 – Cirrus Logic Inc. 2-15 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

2.3 Tips and Tricks

This section helps the programmer avoid common pitfalls and increase performance while pro-
gramming the CL-GD546X.

●

Align patterns on tile boundaries for optimal memory bandwidth use. Patterns must be aligned on word
boundaries.

●

Minimize the number of tile boundaries crossed in a given operation for optimal memory bandwidth use.

●

Many software errors can be traced to improper setup of four registers: BITMASK, BLTDEF, DRAWDEF,
and LNCNTL. These registers should be set up carefully.

●

In some cases it may be optimal to verify that the write queue contains sufficient entries by reading
QFREE prior to a macro operation. On the PCI bus, this only reduces retries when other devices are
contending for the bus.

●

Where multiple registers contain the same information, be certain that the Graphics Accelerator and Dis-
play Controller register settings match for any given mode.

●

Operations fetching from SRAM are faster than operations fetching from RDRAM. If patterns are used
several times in succession, cache them in SRAM.

●

Be careful to feed HOSTDATA the proper number of dwords when doing a host-sourced BitBLT. Also,
when doing a host-destination BitBLT (refer to Section 2.2.6), be careful to read the proper number of
qwords.

●

Set OP(1,2)_opRDRAM.pt.X to (0, 1, 2, 3) to select the proper phase of alignment for host-sourced Bit-
BLTs.

●

Set OP0_opRDRAM.pt.X to (0, 1, 2,..., 7) to select the proper phase alignment for host-destination Bit-
BLTs and for SRAM result BitBLTs.

●

SRAM pointers that are not qword aligned causes the other bytes in the containing SRAM qword to be
written.

2.4 BitBLT Programming Examples

Several BitBLT programming examples are provided in the following sections. These examples
contain the name of the register to be written, followed by the value to be written. Values are in
decimal or hex. Register names follow the coding practice found in the LGREGS.H file and the
register chapters of this manual.

Reading the Programming Examples

When reading or using the BitBLT programming examples, follow the instructions at the beginning
of this chapter. HOSTDATA indicate data being written to the HOSTDATA port from the system
CPU during a host to frame buffer or SRAM BitBLT. Following the BLTEXT command in these
cases, HOSTDATA lines are provided with the proper number of dwords. One or more dwords are
appended to a single HOSTDATA line. All HOSTDATA writes are 32-bit writes regardless of the
numeric format in the example. Another special case is READHOSTDATA followed by the size
(byte, word, dword) to be read back from a frame buffer or SRAM during the host BitBLT.

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-16 Copyright 1996 – Cirrus Logic Inc.

2.4.1 Software Cursor Programming Example

The CL-GD546X supports a 64

×

 64 bit-mapped hardware cursor. The following example is for
illustrative purposes only. It provides a method of software implementation for generating cursor-
like objects of arbitrary size, color, and transparency properties.

A monochrome transparency mask is combined with a color cursor map. The color cursor is in the
shape of a picture frame. The monochrome transparency mask is the frame’s interior region. This
type of operation could be used in a game for a target sighting device. The cursor color and trans-
parency maps are loaded into off screen memory. The cursor area is then saved to off-screen
memory and the cursor is painted. The off-screen save area is copied back to the cursor location.
The cursor is moved and the cycle repeats. The example below shows the first two cycles of mov-
ing the cursor diagonally from upper left towards lower right. The delta X and delta Y movements
are set to ‘1’. Redundant register writes are eliminated from the example.

load 16 pixel x 16 line color cursor map from host to frame buffer.

BITMASK 0xFFFFFFFF # write mask -> all enable

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

CONTROL 0x0400 # Swizzle on (Reverses Bit Order

with in HOSTDATA BYTES). Note that

this is 8 Bits-per-pixel.

OP0_opRDRAM.pt.X 0 # BLT -> 0,256 off-screen memory

OP0_opRDRAM.pt.Y 256

OP1_opRDRAM.pt.X 0 # Set Host Data Transfer phase of 0

BLTEXT_EX.pt.X 16 # 16 pixel by 16 line color map

BLTEXT_EX.pt.Y 16

HOSTDATA 0x52525252 0x52525252 0xAAAAAAAA 0xAAAAAAAA # line 1

HOSTDATA 0x52525252 0x52525252 0xAAAAAAAA 0xAAAAAAAA # line 2

HOSTDATA 0x00005252 0x00000000 0x00000000 0xAAAA0000 # line 3

HOSTDATA 0x00005252 0x00000000 0x00000000 0xAAAA0000 # line 4

HOSTDATA 0x00005252 0x00000000 0x00000000 0xAAAA0000 # line 5

HOSTDATA 0x00005252 0x00000000 0x00000000 0xAAAA0000 # line 6

HOSTDATA 0x00005252 0x00000000 0x00000000 0xAAAA0000 # line 7

HOSTDATA 0x00005252 0x00000000 0x00000000 0xAAAA0000 # line 8

HOSTDATA 0x00004444 0x00000000 0x00000000 0xFFFF0000 # line 9

HOSTDATA 0x00004444 0x00000000 0x00000000 0xFFFF0000 # 10

HOSTDATA 0x00004444 0x00000000 0x00000000 0xFFFF0000 # 11

HOSTDATA 0x00004444 0x00000000 0x00000000 0xFFFF0000 # 12

HOSTDATA 0x00004444 0x00000000 0x00000000 0xFFFF0000 # 13

HOSTDATA 0x00004444 0x00000000 0x00000000 0xFFFF0000 # 14

HOSTDATA 0x44444444 0x44444444 0xFFFFFFFF 0xFFFFFFFF # 15

HOSTDATA 0x44444444 0x44444444 0xFFFFFFFF 0xFFFFFFFF # 16

#

load a 16 bit x 16 line mono transparency map from host to frame # buffer.

Copyright 1996 – Cirrus Logic Inc. 2-17 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

OP0_opRDRAM.pt.X 16 # BLT->16,256 BLT to off-screen memory

OP0_opRDRAM.pt.Y 256

BLTEXT_EX.pt.X 2 # mask width (in bytes)

BLTEXT_EX.pt.Y 16 # mask length (in lines)

HOSTDATA 0xFFFF # line 1 XXXXXXXXXXXXXXXX

HOSTDATA 0xFFFF # line 2 XXXXXXXXXXXXXXXX

HOSTDATA 0x03c0 # line 3 XX XX

HOSTDATA 0x03c0 # line 4 XX XX

HOSTDATA 0x03c0 # line 5 XX XX

HOSTDATA 0x03c0 # line 6 XX XX

HOSTDATA 0x03c0 # line 7 XX XX

HOSTDATA 0x03c0 # line 8 XX XX

HOSTDATA 0x03c0 # line 9 XX XX

HOSTDATA 0x03c0 # line 10 XX XX

HOSTDATA 0x03c0 # line 11 XX XX

HOSTDATA 0x03c0 # line 12 XX XX

HOSTDATA 0x03c0 # line 13 XX XX

HOSTDATA 0x03c0 # line 14 XX XX

HOSTDATA 0xFFFF # line 15 XXXXXXXXXXXXXXXX

HOSTDATA 0xFFFF # line 16 XXXXXXXXXXXXXXXX

Setup FG & BG color for transparency engine.

point to mono mask

OP2_opmRDRAM.pt.X 128

OP2_opmRDRAM.pt.Y 256

BLT X extent is invariant in example.

BLTEXT_EX.pt.X 16

#begin cursor movement loop

#SaveUnder from first location.

BLTDEF 0x1111

DRAWDEF 0x00CC

OP0_opRDRAM.pt.X 24

OP0_opRDRAM.pt.Y 256

OP1_opRDRAM.pt.X 0

OP1_opRDRAM.pt.Y 0

BLTEXT_EX.pt.Y 16

#Paint Cursor.

BLTDEF 0x1015

DRAWDEF 0x01CC

OP0_opRDRAM.pt.X 0

OP0_opRDRAM.pt.Y 0

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-18 Copyright 1996 – Cirrus Logic Inc.

OP1_opRDRAM.pt.X 0

OP1_opRDRAM.pt.Y 256

BLTEXT_EX.pt.Y 16

#Restore from SaveUnder to this location.

BLTDEF 0x1111

DRAWDEF 0x00CC

OP1_opRDRAM.pt.X 24

OP1_opRDRAM.pt.Y 256

BLTEXT_EX.pt.Y 16

#SaveUnder from next location.

OP0_opRDRAM.pt.X 24

OP0_opRDRAM.pt.Y 256

OP1_opRDRAM.pt.X 1

OP1_opRDRAM.pt.Y 1

BLTEXT_EX.pt.Y 16

#Paint Cursor to next location.

BLTDEF 0x1015

DRAWDEF 0x01CC

OP0_opRDRAM.pt.X 1

OP0_opRDRAM.pt.Y 1

OP1_opRDRAM.pt.X 0

OP1_opRDRAM.pt.Y 256

BLTEXT_EX.pt.Y 16

#etc...

Copyright 1996 – Cirrus Logic Inc. 2-19 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

2.4.2 Font Load Programming Example

This example illustrates a simple move of a block of data from the host to the frame buffer. The
host is caching a font (typically in off-screen memory) to use in a subsequent text BitBLT. The
monochrome bitmap is treated as color data and moved to the frame buffer. Make sure that the
proper number of dwords are written to the HOSTDATA register following the BLTEXT command.
The number of dwords is the number of lines times the number of dwords required to contain all
the data on a single line. For instance, a font that fills 5 bytes in width and 21 lines in height
requires 2

×

 21 = 42 dwords, since 5 bytes consume all of one and part of a second dword. For
more information on calculating the number of dwords, reference the general formula in
Section 2.2.6 of this chapter.

load 8x8 mono font for letter “E” from host to frame buffer.

BITMASK 0xFFFFFFFF # allbitsenable

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

OP0_opRDRAM.pt.X 0 # BLT -> 0,0 cache font at 0,0

OP0_opRDRAM.pt.Y 0

OP1_opRDRAM.pt.X 0 # HostData phase of 0 (Use Byte at
Low Address as First Byte)

BLTEXT_EX.pt.X 1

BLTEXT_EX.pt.Y 8

HOSTDATA 0x00000000

HOSTDATA 0x0000003E

HOSTDATA 0x00000002

HOSTDATA 0x0000001E

HOSTDATA 0x00000002

HOSTDATA 0x00000002

HOSTDATA 0x0000007E

HOSTDATA 0x00000000

2D PROGRAMMER’S GUIDE

CL-GD546X Software Technical Reference Manual

September 1996 2-20 Copyright 1996 – Cirrus Logic Inc.

2.4.3 Text BitBLT, Foreground/Background Color Programming Example

The following text BitBLT example writes a character to the screen from a monochrome bitmap
with ones appearing as foreground color, and zeroes appearing as background color. The bitmap
is assumed to be in the frame buffer. Fill out the foreground and background colors in the Fore-
ground Color and Background Color registers if they are 8 or 16 bpp (at 8 bpp, the color is
repeated four times).

do a mono to color foreground/background BLT mono font using the
mono “E” font from prior example.

OP_OPBGCOLOR 0x22222222 # load colors

OP_OPFGCOLOR 0x00000000

BLTDEF 0x1050 # res = RDRAM, op1/src = fb mono

DRAWDEF 0x00CC # rop = src copy

OP1_OPmRDRAM.pt.X 0x0

OP1_OPmRDRAM.pt.Y 0x0

OP0_OPRDRAM.pt.X 0x1

OP0_OPRDRAM.pt.Y 0x0

BLTEXT_EX 0x00080008 # 8 x 8 character

2.4.4 Text BitBLT, Monochrome Font from Host Programming Example

This example illustrates how to write a character to the screen with the font cached on the host.
This method of rendering characters can be simpler and faster than caching fonts in the frame
buffer in some systems. If the monochrome font bitmap is provided by the function that is request-
ing the font to be rendered, then skipping the cache to off-screen eliminates unnecessary memory
accesses.

draw 8x8 mono font for letter “h” from host to framebuffer.

BITMASK 0xFFFFFFFF # allbitsenable

BLTDEF 0x1060 # op1_is_host_mono,
res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

OP0_opRDRAM.pt.X 0 # BLT -> 0,0

OP0_opRDRAM.pt.Y 0

OP1_opMRDRAM.pt.X 0 # Set Host Phase of zero

OP_OPBGCOLOR 0xAAAAAAAA # Set FG & BG colors

OP_OPFGCOLOR 0x55555555

CONTROL 0x0400 # Swizzle on

BLTEXT_EX.pt.X 8 # Command BLTer to take data

BLTEXT_EX.pt.Y 8

HOSTDATA 0x00000000

HOSTDATA 0x00000040

HOSTDATA 0x00000040

HOSTDATA 0x00000040

HOSTDATA 0x00000078

Copyright 1996 – Cirrus Logic Inc. 2-21 September 1996

CL-GD546X Software Technical Reference Manual

2D PROGRAMMER’S GUIDE

HOSTDATA 0x00000048

HOSTDATA 0x00000048

HOSTDATA 0x00000000

draw 8x8 mono font for transparent letter “h” from host to frame

buffer.

BLTDEF 0x1866 # op1_is_host_mono,
op2_is_host_mono,

res_is_rdram, op1 = op2

DRAWDEF 0x01CC # rop_op1_copy, xpar

OP0_opRDRAM.pt.X 8 # BLT -> 0,0

OP0_opRDRAM.pt.Y 8

OP2_opMRDRAM.pt.X 0 # Set Host Phase of zero

OP1_opMRDRAM.pt.X 0

BLTEXT_EX.pt.X 8 # Command BLTer to take data

BLTEXT_EX.pt.Y 8

HOSTDATA 0x00000000

HOSTDATA 0x00000040

HOSTDATA 0x00000040

HOSTDATA 0x00000040

HOSTDATA 0x00000078

HOSTDATA 0x00000048

HOSTDATA 0x00000048

HOSTDATA 0x00000000

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-22 Copyright 1996 – Cirrus Logic Inc.

2.4.5 Text BitBLT, Transparent Background Programming Example

This example places an 8 × 8 character on the screen. The character is foreground color, and the
background is transparent. Both the OP1 (SRC) and the OP2 (PAT) are pointed to the same font.
While OP1 performs the foreground monochrome-to-color conversion, OP2 performs the trans-
parent decision making.

load 8x8 mono font for letter “h” from host to framebuffer.

BITMASK 0xFFFFFFFF # allbitsenable

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

OP1_opRDRAM.pt.X 0 # host phase is 0

OP0_opRDRAM.pt.X 0 # BLT -> 0,0

OP0_opRDRAM.pt.Y 0

BLTEXT_EX.pt.X 1

BLTEXT_EX.pt.Y 8

HOSTDATA 0x00000000

HOSTDATA 0x0000003E

HOSTDATA 0x00000002

HOSTDATA 0x0000001E

HOSTDATA 0x00000002

HOSTDATA 0x00000002

HOSTDATA 0x0000007E

HOSTDATA 0x00000000

do a transparent mono to color BLT using the mono “E” font.

FGC! = BGC for mono transparency to work.

OP_OPBGCOLOR 0x00000000

OP_OPFGCOLOR 0x01010101

BLTDEF 0x1055 # res = RDRAM op1 =
rdram_mono,

op2 = rdram_mono

DRAWDEF 0x01cc # src copy transp_op = “=“

OP2_OPmRDRAM.pt.X 0x0 # point to mono mask (same as
font)

OP2_OPmRDRAM.pt.Y 0x0

OP1_OPmRDRAM.pt.X 0x0 # point to font (same as mono
mask)

OP1_OPmRDRAM.pt.Y 0x0

OP0_OPRDRAM.pt.X 0x8 # point to destination

OP0_OPRDRAM.pt.Y 0x8

BLTEXT_EX 0x00080008 # BLT it.

Copyright 1996 – Cirrus Logic Inc. 2-23 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.6 Simple Source Copy Programming Example

The following example is of a BitBLT moving a rectangular region from one location in the frame
buffer to another location. Analyze the cases for overlapping BitBLTs. Overlapping BitBLTs that
move down (increasing Y) the screen are performed with BLTDEF.YDIR set to up, and with the
source and destination pointers anchored to the lower-left corners of the rectangles. Overlapping
BitBLTs that move up the screen are performed with BLTDEF.YDIR set to down, and with the
source and destination pointers anchored to the upper-left corners. Additionally, the programmer
should consider the case of a purely horizontal, left-to-right BitBLT that has the destination over-
lapping the source. This BitBLT results in vertical stripes unless it is broken up into vertical strips
of 128 bytes width or cached through an intermediate buffer.

BLTDEF 0x1111 # result=fb, op1=op2=color fb

DRAWDEF 0x00CC # rop = srccpy (op1 copy)

OP1_opRDRAM.pt.X 60 # source = 60,2

OP1_opRDRAM.pt.Y 2

OP0_opRDRAM.pt.X 88 # result = 88,8

OP0_opRDRAM.pt.Y 08

BLTEXT_EX.pt.X 8 # BLT size = 8x16

BLTEXT_EX.pt.Y 16

The variation below, of the example above, shows that OP2 is also used for
‘source’ copy BitBLTs. Do not confuse its ‘Pat’ name and assume it always
patterns. Both OP1 and OP2 can pattern, but the respective pattern bits must be
set in the BLTDEF register. This is NOT a pattern BitBLT. It is a simple
rectangular move.

BLTDEF 0x1111 # result=fb, op1=op2=color fb

DRAWDEF 0x00F0 # rop = patcpy (op2 copy)

OP2_opRDRAM.pt.X 60 # source = 60,2

OP2_opRDRAM.pt.Y 2

OP0_opRDRAM.pt.X 88 # result = 88,8

OP0_opRDRAM.pt.Y 08

BLTEXT_EX.pt.X 8 # BLT size = 8x16

BLTEXT_EX.pt.Y 16

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-24 Copyright 1996 – Cirrus Logic Inc.

2.4.7 Copy Frame Buffer-to-Host Programming Example

The following BitBLT example moves a rectangular block from the frame buffer into the host mem-
ory. To set up the BitBLT parameters, issue the BLTEXT command, and read the appropriate num-
ber of dwords from the HOSTDATA register. Make sure that the proper number of dwords are read
from the HOSTDATA register. The number of dwords is the number of lines times the number of
dwords required to contain all the data on a single line rounded up to the nearest qword. The 2D
engine only supplies data in 8-byte units to the host. For instance, a font that fills 5 bytes in width
and 21 lines in height requires 2 × 21 = 42 dwords, since 5 bytes consume all of one and part of
a second dword. For more information on how to calculate the number of dwords, reference the
general formula in Section 2.2.6.

read 4x4 region from 8bpp frame buffer

BLTDEF 0x2010 # op1_is_rdram, res_is_host

DRAWDEF 0x00CC # rop_op1_copy

OP0_opRDRAM.pt.X 0 # host phase is 0

OP1_opRDRAM.pt.X 100 # BLT source is 100,100

OP1_opRDRAM.pt.Y 100

BLTEXT_EX.pt.X 4

BLTEXT_EX.pt.Y 4

read HOSTDATA DWORD # 4 pixels at 8 bpp first Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp first Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp second Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp second Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp third Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp third Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp fourth Y line

read HOSTDATA DWORD # 4 pixels at 8 bpp fourth Y line

Copyright 1996 – Cirrus Logic Inc. 2-25 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.8 Color-Pattern BitBLT Programming Example

In this example, a color-pattern BitBLT tiles a rectangular region with a patterned source. OP
fetches the pattern from the frame buffer. The result is written to another frame buffer location.

All patterns are 8 × 8 pixels in dimension. Eight- and sixteen-bpp patterns are stored linearly in
adjacent memory locations, 24- and 32-bpp patterns are stored on two adjacent lines (same X,
Ys differ by one). Align pattern sources to qword boundaries.

The pattern (0,0) is anchored to the frame buffer (0,0) and is moved with respect to this anchoring
by setting the PATOFF(X,Y) register. PATOFF(X,Y) values of (0,0) anchors the upper-left corner
of the pattern to (0,0) in the frame buffer. PATOFF(X,Y) values of (7,7) anchors the lower-right cor-
ner of the pattern to (0,0) in the frame buffer. Once a PATOFF value is selected, all subsequent
patterned BitBLTs align with each other regardless of their destination addresses.

BITMASK 0xFFFFFFFF # enable all bits

OP_OPBGCOLOR 0x00000000 # make fg! = bg for any future
transparency to work

OP_OPFGCOLOR 0xFFFFFFFF

OP0_opRDRAM.pt.X 0x0 # set all phases to 0

OP1_opRDRAM.pt.X 0x0

OP2_opRDRAM.pt.X 0x0

OP0_opSRAM 0x0

OP1_opSRAM 0x0

OP2_opSRAM 0x0

CONTROL 0x0000 # Swizzle off

load 8x8 color pattern from host to frame buffer.

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

OP1_opRDRAM.pt.X 0x0 # host source alignment

OP0_opRDRAM.pt.X 0x8 # send result to 8,1 quad word
aligned

OP0_opRDRAM.pt.Y 0x1 # NOTE ONLY 8/16 bpp Patterns can go
on ODD scanlines

BLTEXT_EX.pt.X 64 # pattern size is always 8x8
but BLTed

linear into 64x1 in 8 bpp

BLTEXT_EX.pt.Y 1

HOSTDATA 0x20202020 0x40202020 # This 8 bpp pattern is

several concentric

colored squares

HOSTDATA 0x00000020h 40000000h

HOSTDATA 0x55550020h 40005555h

HOSTDATA 0x01550020h 40005503h

HOSTDATA 0x02550020h 40005504h

HOSTDATA 0x55550020h 40005555h

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-26 Copyright 1996 – Cirrus Logic Inc.

HOSTDATA 0x00000020h 40000000h

HOSTDATA 0x40404020h 40404040h

BLTDEF 0x1090 # op1 color pat, op2 color pat

DRAWDEF 0x00CC # rop = SRCCPY

PATOFF 0x0000 # no offset into pattern

OP0_opRDRAM.pt.X 0x22 # destination is 22h, 22h

OP0_opRDRAM.pt.Y 0x22

OP1_opRDRAM.pt.X 0x8 # color pat at 8,1

OP1_opRDRAM.pt.Y 0x1

BLTEXT_EX.pt.X 32 # BLT size is 32x32

BLTEXT_EX.pt.Y 32

2.4.9 Monochrome-to-Color BitBLT Programming Example

The following is an example of a monochrome-to-color BitBLT.

load 8x8 mono pattern for letter “h” from host to frame buffer.

BITMASK 0xFFFFFFFF # allbitsenable

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00cc # srccpy

CONTROL 0x0400 # Swizzle on

OP1_opRDRAM.pt.X 0 # host source alignment

OP0_opRDRAM.pt.X 0 # BLT -> 0,0

OP0_opRDRAM.pt.Y 0

BLTEXT_EX.pt.X 8 # 8 byte BLT

BLTEXT_EX.pt.Y 1

HOSTDATA 0x40404000 # pattern data

HOSTDATA 0x00484878

CONTROL 0x0000 # Swizzle off

do a mono pattern to color fg/bg BLT using the pattern letter “h”

above.

OP_OPBGCOLOR 0xAAAAAAAA

OP_OPFGCOLOR 0x55555555

BLTDEF 0x10D0 # res=fb; op1=pat,mono,fb

DRAWDEF 0x00CC # src copy

PATOFF 0x0000

OP1_OPmRDRAM.pt.X 0x0

OP1_OPmRDRAM.pt.Y 0x0

OP0_OPRDRAM.pt.X 0x1

OP0_OPRDRAM.pt.Y 0x1

BLTEXT_EX.pt.X 0x0010

BLTEXT_EX.pt.Y 0x0010

Copyright 1996 – Cirrus Logic Inc. 2-27 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.10 Solid-Color-Fill Programming Example

This example fills a rectangular frame buffer region with the color specified in the BGCOLOR reg-
ister.

#Example of a color fill

OP_OPBGCOLOR 0x22222222 # load fill color

BLTDEF 0x1070 # op1 color source

DRAWDEF 0x00CC # rop = srccpy

OP0_opRDRAM.pt.X 0x0 # result at 0,0

OP0_opRDRAM.pt.Y 0x0

BLTEXT_EX.pt.X 1024 # size = 1024x768 (fill the
screen)

BLTEXT_EX.pt.Y 768

#Example of a blackness rop fill

BLTDEF 0x1101 # op1 color

DRAWDEF 0x0000 # rop = BLACKNESS, op1 src
must be

SRAM

OP0_opRDRAM.pt.X 0x2 # result at 2,2

OP0_opRDRAM.pt.Y 0x2

BLTEXT_EX.pt.X 32 # size = 32x32 (blacken a
square

region)

BLTEXT_EX.pt.Y 32

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-28 Copyright 1996 – Cirrus Logic Inc.

2.4.11 Copy Host to SRAM to Frame Buffer Programming Example

This example loads a pattern from the host into the OP1 SRAM. This operation improves perfor-
mance by loading SRAM prior to a series of patterning operations. A pattern BitBLT from the frame
buffer loads SRAM during its operation. Subsequent BitBLTs are then performed from SRAM with-
out an explicit move into SRAM (note that if auto-BitBLTs are triggered, there is a possibility that
SRAM contents are overwritten during the auto-BitBLT. This can trigger between the first and sec-
ond BitBLTs, invalidating the data.)

load 8x8 color pattern from host to SRAM

BLTDEF 0x5020 # op1_is_host, res_is_sram1

DRAWDEF 0x00CC # rop_op1_copy

OP0_opRDRAM.pt.X 0 # point to SRAM.(SRAM0 ptr is
used

for ALL result SRAMS)

OP1_opRDRAM.pt. X 0x0 # Host Phase of zero

BLTEXT_EX.pt.X 64

BLTEXT_EX.pt.Y 1

HOSTDATA 0x20202020 0x40202020

HOSTDATA 0x00000020 0x40000000

HOSTDATA 0x55550020 0x40005555

HOSTDATA 0x01550020 0x40005503

HOSTDATA 0x02550020 0x40005504

HOSTDATA 0x55550020 0x40005555

HOSTDATA 0x00000020 0x40000000

HOSTDATA 0x40404020 0x40404040

pattern the screen with the above color pattern from sram1

PATOFF 0x0000

BLTDEF 0x1080 # res RDRAM, OP1 SRAM pat

DRAWDEF 0x00CC # SRC copy

OP1_opSRAM 0

OP0_opRDRAM.pt.X 0x00

OP0_opRDRAM.pt.Y 0x00

BLTEXT_EX.pt.X 0x20

BLTEXT_EX.pt.Y 0x20

#BLT sram1 to sram2 (an unusual operation but what the heck)

BLTDEF 0x6000 # res sram2, OP1 SRAM (NOTE
pat bit

not required)

DRAWDEF 0x00CC # SRC copy

OP0_opRDRAM.pt.X 0 # load at offset 0 in SRAM2

 OP1_opSRAM 0 # load from offset 0 in SRAM1

BLTEXT_EX.pt.X 64 # move 64 bytes (8bpp)

Copyright 1996 – Cirrus Logic Inc. 2-29 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

BLTEXT_EX.pt.Y 1

pattern the screen with the sram2 color pattern

PATOFF 0000

BLTDEF 0x1008 # res RDRAM, OP2 SRAM color
pattern

DRAWDEF 0x00F0 # PAT copy

OP2_opSRAM 0

OP0_opRDRAM.pt.X 0x20

OP0_opRDRAM.pt.Y 0x20

BLTEXT_EX.pt.X 0x20

BLTEXT_EX.pt.Y 0x20

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-30 Copyright 1996 – Cirrus Logic Inc.

2.4.12 Transparent-Monochrome-Cursor Programming Example

This example shows how to use two separate monochrome maps to implement a cursor. The
shape of the cursor is defined by one transparency mask and the two foreground and background
colors are defined by the other mask. The resulting cursor is a two-color picture frame shape with
a transparent center cutout. The monochrome masks are stored in the frame buffer with two host
BLTs, and the cursor object is rendered from them.

load 16 bit x 16line mono cursor map from host to frame buffer.

BITMASK 0xFFFFFFFF # write mask -> all enable

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

OP0_opRDRAM.pt.X 0 # BLT -> 0,256 off-screen
memory

OP0_opRDRAM.pt.Y 256

OP1_opRDRAM.pt.X 0x0 # Host Phase of zero

CONTROL 0x0400 # Swizzle on

BLTEXT_EX.pt.X 2 # cursor width in bytes

BLTEXT_EX.pt.Y 16 # cursor length in lines

HOSTDATA 0x0000 # line 1

HOSTDATA 0x0100 # line 2 1=Foregound color
X

HOSTDATA 0x0300 # line 3 0=Background
color XX

HOSTDATA 0x0700 # line 4 XXX

HOSTDATA 0x0f00 # line 5 XXXX

HOSTDATA 0x1f00 # line 6 XXXXX

HOSTDATA 0x3f00 # line 7 XXXXXX

HOSTDATA 0x7f00 # line 8 XXXXXXX

HOSTDATA 0xff01 # line 9 XXXXXXXX

HOSTDATA 0xff03 # line 10 XXXXXXXXX

HOSTDATA 0xff07 # line 11 XXXXXXXXXX

HOSTDATA 0xff0f # line 12 XXXXXXXXXXX

HOSTDATA 0xff1f # line 13 XXXXXXXXXXXX

HOSTDATA 0xff3f # line 14 XXXXXXXXXXXXX

HOSTDATA 0xff7f # line 15 XXXXXXXXXXXXXX

HOSTDATA 0xffff # line 16 XXXXXXXXXXXXXXX

#

load a 16 bit x 16 line mono transparency map from host to frame # buffer.

#

BITMASK 0xFFFFFFFF # write mask -> all enable

BLTDEF 0x1020 #
Src(Op1)=Host,Dest=FB(Frame

Buffer)

Copyright 1996 – Cirrus Logic Inc. 2-31 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

DRAWDEF 0x00CC # ROP = Copy

OP0_opRDRAM.pt.X 16 # BLT -> 16,256 BitBLT to off-
screen

memory

OP0_opRDRAM.pt.Y 256

CONTROL 0x0500 # Swizzle on, Fifo = 32

BLTEXT_EX.pt.X 2 # mask width (in bytes)

BLTEXT_EX.pt.Y 16 # mask length (in lines)

HOSTDATA 0xffff # line 1 XXXXXXXXXXXXXXXX

HOSTDATA 0xffff # line 2 XXXXXXXXXXXXXXXX

HOSTDATA 0xffff # line 3 XXXXXXXXXXXXXXXX

HOSTDATA 0xffff # line 4 XXXXXXXXXXXXXXXX

HOSTDATA 0x0ff0 # line 5 XXXX XXXX

HOSTDATA 0x0ff0 # line 6 XXXX XXXX

HOSTDATA 0x0ff0 # line 7 XXXX XXXX

HOSTDATA 0x0ff0 # line 8 XXXX XXXX

HOSTDATA 0x0ff0 # line 9 XXXX XXXX

HOSTDATA 0x0ff0 # line 10 XXXX XXXX

HOSTDATA 0x0ff0 # line 11 XXXX XXXX

HOSTDATA 0x0ff0 # line 12 XXXX XXXX

HOSTDATA 0xffff # line 13 XXXXXXXXXXXXXXXX

HOSTDATA 0xffff # line 14 XXXXXXXXXXXXXXXX

HOSTDATA 0xffff # line 15 XXXXXXXXXXXXXXXX

HOSTDATA 0xffff # line 16 XXXXXXXXXXXXXXXX

OP_OPFGCOLOR 0x55555555 # Pick a color. Foreground
color = Pink.

OP_OPBGCOLOR 0x44444444 # Ditto. Background color =
Yellow

#

DRAWDEF 0x83CC # Src(OP1)=Mono_Sat,
Transp=on,

ROP=Src copy

BLTDEF 0x1055 #
Dest=FB,Src=Mono_FB,Pat=Mono_FB

OP2_opmRDRAM.pt.X 128 # pattern (bits, lines)

OP2_opmRDRAM.pt.Y 256

OP1_opmRDRAM.pt.X 0 # source (bits, lines)

OP1_opmRDRAM.pt.Y 256

OP0_opRDRAM.pt.X 32 # destination (pixels, lines)

OP0_opRDRAM.pt.Y 64 # Cursor_X, Cursor_Y

BLTEXT_EX.pt.X 16

BLTEXT_EX.pt.Y 16 # Do it

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-32 Copyright 1996 – Cirrus Logic Inc.

2.4.13 Color-Transparency BitBLTs Programming Example

Use this example to put a striped-color rectangle on the screen. Use SRAM as an example, fol-
lowed by a color-pattern load. The color pattern is displayed and then BitBLTed on top of the orig-
inal rectangular area twice, once with source transparency and again with destination
transparency. These BitBLTs are useful for ‘blue-screen’ animation.

Set the Copy to happen from Start of SRAM

OP0_opSRAM 0x00

OP1_opSRAM 0x00

OP2_opSRAM 0x00

OP_opBGCOLOR 0x55555555 # transparent compare color
is 55h

OP1_opRDRAM.pt.X 0x0 # Host Phase of zero

OP0_opRDRAM.pt.X 0x00 # set SRAM offset for result

Load the SRAM 1 from host

BLTDEF 0x5020 # op1_is_host, res_is_sram

DRAWDEF 0x00CC # rop_op1_copy

BLTEXT_EX.pt.X 128

BLTEXT_EX.pt.Y 1

HOSTDATA contains many 55’s to illustrate color transparency in

subsequent BLTs.

HOSTDATA 0xcbcb55c8 0xcf55cfcc

HOSTDATA 0xd3d355d0 0xd755d7d4

HOSTDATA 0xdbdb55d8 0xdf55dfdc

HOSTDATA 0xe3e355e0 0xe755e7e4

HOSTDATA 0x03035500 0x07550704

HOSTDATA 0x0b0b5508 0x0f550f0c

HOSTDATA 0x13135510 0x17551714

HOSTDATA 0x1b1b5518 0x1f551f1c

HOSTDATA 0x03035500 0x07550704

HOSTDATA 0x0b0b5508 0x0f550f0c

HOSTDATA 0x13135510 0x17551714

HOSTDATA 0x1b1b5518 0x1f551f1c

HOSTDATA 0xcbcb55c8 0xcf55cfcc

HOSTDATA 0xd3d355d0 0xd755d7d4

HOSTDATA 0xdbdb55d8 0xdf55dfdc

HOSTDATA 0xe3e355e0 0xe755e7e4

Load the FB from SRAM with the above color data.

BLTDEF 0x1000 # op1_is_sram, res_is_rdram

DRAWDEF 0x00cc # rop_op1_copy

OP0_opRDRAM.pt.X 0x10 # BLT to 10h, 10h

Copyright 1996 – Cirrus Logic Inc. 2-33 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

OP0_opRDRAM.pt.Y 0x10

BLTEXT_EX.pt.X 128 # size is 128x20

BLTEXT_EX.pt.Y 20

Load 8x8 color pattern from host to frame buffer.

BLTDEF 0x1020 # op1_is_host, res_is_rdram

DRAWDEF 0x00CC # rop_op1_copy

OP0_opRDRAM.pt.X 0x00 # BLT pattern to 0,0

OP0_opRDRAM.pt.Y 0x00

BLTEXT_EX.pt.X 64

BLTEXT_EX.pt.Y 1

Pattern contains lots of 55’s to illustrate color transparency

later on.

HOSTDATA 0x55555555 0x55555555

HOSTDATA 0x22222220 0x33333333

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x55552222 0x33335555

HOSTDATA 0x22222222 0x33333333

HOSTDATA 0x55555555 0x55555555

Pattern the screen with the above color pattern just to show the

raw pattern.

PATOFF 0000

BLTDEF 0x1109 # res RDRAM, OP2 COL PAT

DRAWDEF 0x00F0 # PAT copy

OP2_opRDRAM.pt.X 0x00

OP2_opRDRAM.pt.Y 0x0

OP0_opRDRAM.pt.X 0x02 # put it at 2,2

OP0_opRDRAM.pt.Y 0x02

BLTEXT_EX.pt.X 0x30 # make it 30Hx10H

BLTEXT_EX.pt.Y 0x10

Illustrate source transparency. Source pixels that match 55 will

not be written to result.

Pattern a rectangle on the screen over top of the original color

rectangle with the color pattern with color transparency on.

Note that OP2 is used for both transparency and pattern.

PATOFF 0000

BLTDEF 0x1109 # res RDRAM, OP2 COL PAT,

DRAWDEF 0x01F0 # PAT copy, trn=on / opn=”=”

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-34 Copyright 1996 – Cirrus Logic Inc.

OP2_opRDRAM.pt.X 0x00 # Point to source color
pattern

containing 55’s

OP2_opRDRAM.pt.Y 0x0

OP0_opRDRAM.pt.X 0x40 # Point on top of existing
color

rectangle.

OP0_opRDRAM.pt.Y 0x14

BLTEXT_EX.pt.X 0x40 # Paint it!

BLTEXT_EX.pt.Y 0x18

Illustrate destination transparency. Destination pixels that match 55 will not
be written to.

PATOFF 0000

BLTDEF 0x1191 # res RDRAM; OP1 color pat;
OP2 color

DRAWDEF 0x03CC # srccpy; trn=on, op="!="

OP1_opRDRAM.pt.X 0x00 # point to color pattern
source.

OP1_opRDRAM.pt.Y 0x00

OP2_opRDRAM.pt.X 0x14 # point to “destination” for
transparent compare

OP2_opRDRAM.pt.Y 0x08

OP0_opRDRAM.pt.X 0x14 # point to result destination

OP0_opRDRAM.pt.Y 0x08

BLTEXT_EX.pt.X 0x18 # Paint it 18Hx20H

BLTEXT_EX.pt.Y 0x20

Copyright 1996 – Cirrus Logic Inc. 2-35 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.14 Monochrome-Pattern-Transparency Mask Programming Example

This BitBLT example puts several 8 × 8 patterns onto the destination region. The result is a four-
square set of BitBLTs. The monochrome pattern is stored in the frame buffer in one 64-bit qword.
With monochrome transparency, the monochrome bits directly control the writes to the frame
buffer. With the transparency compare operation set to equal, any bit that is a one blocks the write
to the frame buffer for the corresponding pixel. A zero bit allows the write. The foreground and
background colors need only be set if the programmer is actually using the monochrome-to-color
conversion.

BITMASK 0xFFFFFFFF
OP_OPBGCOLOR 0x00000000
OP_OPFGCOLOR 0xFFFFFFFF
OP1_opRDRAM.pt.X 0x0
OP0_opSRAM 0x0

Load 8x8 mono pattern for diagonal stripes from host to frame
buffer.
BLTDEF 0x1020 # op1_is_host, res_is_rdram
DRAWDEF 0x00CC # rop_op1_copy
OP0_opRDRAM.pt.X 0x0 # BLT -> 10,0
OP0_opRDRAM.pt.Y 0x0 # BLT -> 10,0
OP1_opRDRAM.pt.X 0x0 # Host Phase of zero
BLTEXT_EX.pt.X 0x8
BLTEXT_EX.pt.Y 0x1
HOSTDATA 0x88112244
HOSTDATA 0x88112244

Transparent tile the upper right square with a BLT down
BLTDEF 0x109D # op1 color pat, op2 MONOPAT
DRAWDEF 0x01F0 # transp on, ROP=PATCPY
PATOFF 0x0000
OP0_opRDRAM.pt.X 0x24
OP0_opRDRAM.pt.Y 0x02
OP2_opmRDRAM.pt.X 0x00 # mono pat at 0,0
OP2_opmRDRAM.pt.Y 0x00
BLTEXT_EX.pt.X 32
BLTEXT_EX.pt.Y 32

Transparent tile the lower right square with a BLT up
BLTDEF 0x909D # op1 color pat, op2 MONOPAT
DRAWDEF 0x01F0 # transp on, ROP=PATCPY
PATOFF 0x0000
OP0_opRDRAM.pt.X 0x24
OP0_opRDRAM.pt.Y 0x42 # lower left dest
OP2_opmRDRAM.pt.X 0x00 # mono pat at 0,0
OP2_opmRDRAM.pt.Y 0x00
BLTEXT_EX.pt.X 32
BLTEXT_EX.pt.Y 32

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-36 Copyright 1996 – Cirrus Logic Inc.

2.4.15 Byte BitBLT Using MBitBLT and BitBLT for Color-Fills Programming Example

In this example, a 16-bpp frame buffer demonstrates how to put four colored rectangles of pixel
extent, 100 × 100 (byte extent 200 × 100 lines), onto the screen with mixed OP pointer types and
BLTEXT types.

FILL WITH PIXEL POINTERS AND PIXEL EXTENTS. Goes to PP (0,0)

BLTDEF 0x1070 # op1 color fill

DRAWDEF 0x00CC # rop = FILL

OP_OPBGCOLOR 0x11111111

OP0_opRDRAM.pt.X 0

OP0_opRDRAM.pt.Y 0

BLTEXT_EX.pt.X 100

BLTEXT_EX.pt.Y 100

FILL WITH PIXEL POINTERS AND BYTE EXTENTS. Goes to PP (100,200)

OP_OPBGCOLOR 0x44444444

OP0_opRDRAM.pt.X 100

OP0_opRDRAM.pt.Y 100

MBLTEXT_EX.pt.X 200 # in 16 bpp, 100 pixels wide
is 200

bytes

MBLTEXT_EX.pt.Y 100

FILL WITH BYTE POINTERS AND BYTE EXTENTS; GOES TO PP(200,200)

OP_OPBGCOLOR 0x88888888

OP0_opmRDRAM.pt.X 400 # in 16 bpp, X pixel address
200 is

byte address 400

OP0_opmRDRAM.pt.Y 200

MBLTEXT_EX.pt.X 200 # in 16 bpp, 100 pixels wide
is 200

bytes

MBLTEXT_EX.pt.Y 100

FILL WITH BYTE POINTERS AND PIXEL EXTENTS. GOES TO PP(300,300)

OP_OPBGCOLOR 0xCCCCCCCC

OP0_opmRDRAM.pt.X 600 # in 16 bpp, X pixel address
300 is

byte address 600

OP0_opmRDRAM.pt.Y 300

BLTEXT_EX.pt.X 100

BLTEXT_EX.pt.Y 100

Copyright 1996 – Cirrus Logic Inc. 2-37 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

2.4.16 Byte BitBLT Using MBitBLT to Off-Screen Cache Programming Example

Using the MBitBLT from host, this example demonstrates loading a 56-byte auto-BitBLT record
into the frame buffer at (0,1024). This is useful for loading data off-screen in a bit-per-pixel inde-
pendent manner. Typical uses of this example are for font loading, pattern caching, auto-BitBLT
record downloads, and cursor-bitmap loading.

BITMASK 0xFFFFFFFF # turn on all bits

BLTDEF 0x1020 # OP1/host source to RDRAM
color

result

DRAWDEF 0x00CC # rop:SRCCOPY

OP0_opMRDRAM.pt.X 0x0000 # point to off-screen
destination

location (0,1024)

OP0_opMRDRAM.pt.Y 0x0400

OP1_opRDRAM.pt.X 0x0000 # data is aligned in host
dwords

phase = 0

MBLTEXT_EX.pt.X 0x0038 # byte extents are 56X bu 1Y

MBLTEXT_EX.pt.Y 0x0001

Auto BLT table 1:

HOSTDATA 0x00000200

HOSTDATA 0x100900F0

HOSTDATA 0x00000000

HOSTDATA 0xFFFFFFFF

HOSTDATA 0x00000080

HOSTDATA 0x00000000

HOSTDATA 0x00000000

HOSTDATA 0x00000000

HOSTDATA 0x00000020

HOSTDATA 0x00000000

HOSTDATA 0x00180080

HOSTDATA 0x00000000

HOSTDATA 0x00000000

HOSTDATA 0x00000000

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-38 Copyright 1996 – Cirrus Logic Inc.

2.5 Register Header Files

This section presents the implementation of a set of ‘C’ language data types and structures,
header files, used for interfacing software to the CL-GD546X. The first file, lgtypes.h, defines sev-
eral types used to create the registers data structure that follows in the second file, lgregs.h.

2.5.1 Header File — lgtypes.h

#ifndef _LGTYPES_H

#define _LGTYPES_H

/* Use #define here instead of typedef to make it easier on systems

where these same types are also defined elsewhere, i.e., it is possible to use
#ifdef, #undef, etc. on these types.

*/

#define byte unsigned char

#define word unsigned short

#define dword unsigned long

typedef unsigned long ul;

typedef unsigned short word;

typedef unsigned char byte;

typedef unsigned char boolean;

typedef struct PT { // point

WORD X;

WORD Y;

} PT;

typedef struct LOHI { // low, high

WORD LO;

WORD HI;

} LOHI;

typedef union _reg32 { // 32 bit register

DWORD dw;

DWORD DW;

PT pt;

PT PT;

LOHI lh;

LOHI LH;

} REG32;

typedef struct LOHI16 { // low, high

BYTE LO;

BYTE HI;

} LOHI16;

typedef struct PT16 { // point

BYTE X;

BYTE Y;

Copyright 1996 – Cirrus Logic Inc. 2-39 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

} PT16;

typedef union _reg16 { // 16 bit register

WORD w;

WORD W;

PT16 pt;

PT16 PT;

LOHI16 lh;

LOHI16 LH;

} REG16;

#endif /* _LGTYPES_H */

2.5.2 Header File — lgregs.h

This file contains the register-set mapping with all component offsets correctly matched to the
CL-GD546X. It contains a record definition for the auto-BitBLT record using the types defined in
lgtypes.h to construct the Graphics_Accelerator_Registers_Type. Bit-field # defines are given to
simplify construction of control fields for selected registers.

#ifndef _LGREGS_

#define _LGREGS_

#include "lgtypes.h"

// CL-GD546X Graphics Accelerator Registers data type.

typedef struct GAR {

// Memory-mapped Registers

// Memory-mapped VGA Registers

BYTE grCR0; //0x0

BYTE grPADCR0[3];

BYTE grCR1; //0x04

BYTE grPADCR1[3];

BYTE grCR2; //0x08

BYTE grPADCR2[3];

BYTE grCR3; //0x0C

BYTE grPADCR3[3];

BYTE grCR4; //0x010

BYTE grPADCR4[3];

BYTE grCR5; //0x014

BYTE grPADCR5[3];

BYTE grCR6; //0x018

BYTE grPADCR[3];

BYTE grCR7; //0x01C

BYTE grPADCR7[3];

BYTE grCR8; //0x020

BYTE grPADCR8[3];

BYTE grCR9; //0x024

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-40 Copyright 1996 – Cirrus Logic Inc.

BYTE grPADCR9[3];

BYTE grCRA; //0x028

BYTE grPADCRA[3];

BYTE grCRB; //0x02C

BYTE grPADCRB[3];

BYTE grCRC; //0x030

BYTE grPADCRC[3];

BYTE grCRD; //0x034

BYTE grPADCRD[3];

BYTE grCRE; //0x038

BYTE grPADCRE[3];

BYTE grCRF; //0x03C

BYTE grPADCRF[3];

BYTE grCR10; //0x040

BYTE grPADCR10[3];

BYTE grCR11; //0x044

BYTE grPADCR11[3];

BYTE grCR12; //0x048

BYTE grPADCR12[3];

BYTE grCR13; //0x04C

BYTE grPADCR13[3];

BYTE grCR14; //0x050

BYTE grPADCR14[3];

BYTE grCR15; //0x054

BYTE grPADCR15[3];

BYTE grCR16; //0x058

BYTE grPADCR16[3];

BYTE grCR17; //0x05C

BYTE grPADCR17[3];

BYTE grCR18; //0x060

BYTE grPADCR18[3];

BYTE grCR19; //0x064

BYTE grPADCR19[3];

BYTE grCR1A; //0x068

BYTE grPADCR1A[3];

BYTE grCR1B; //0x06C

BYTE grPADCR1B[0x74-0x6D];

BYTE grCR1D; //0x074

BYTE grPADCR1D[3];

BYTE grCR1E; //0x078

BYTE grPADCR1E[0x80-0x79];

BYTE grMISC; //0x080

Copyright 1996 – Cirrus Logic Inc. 2-41 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

BYTE grPADMISC[3];

BYTE grSRE; //0x084

BYTE grPADSRE[3];

BYTE grSR1E; //0x088

BYTE grPADSR1E[3];

BYTE grBCLK_Numerator; //0x08C

BYTE grPADBCLK_Numerator[3];

BYTE grSR18; //0x090

BYTE grPADSR18[3];

BYTE grSR19; //0x094

BYTE grPADSR19[3];

BYTE grSR1A; //0x098

BYTE grPADSR1A[0xA0-0x99];

BYTE grPalette_Mask; //0x0A0

BYTE grPADPalette_Mask[3];

BYTE grPalette_Read_Address; //0x0A4

BYTE grPADPalette_Read_Address[3];

#define grPalette_State_Read_Only grPalette_Read_Address

BYTE grPalette_Write_Address; //0x0A8

BYTE grPADPalette_Write_Address[3];

BYTE grPalette_Data; //0x0AC

BYTE grPADPalette_Data[0xB1-0xAD];

// Video Pipeline Registers

BYTE grPalette_State; //0x0B0

BYTE grPADPalette_State[0xB4-0xB1];

BYTE grExternal_Overlay; //0x0B4

BYTE grPADExternal_Overlay[0xB8-0xB5];

BYTE grColor_Key; //0x0B8

BYTE grPADColor_Key[0xBC-0xB9];

BYTE grColor_Key_Mask; //0x0BC

BYTE grPADColor_Key_Mask[0xC0-0xBD];

WORD grFormat; //0x0C0

BYTE grPADFormat[0xCA-0xC2];

BYTE grStop_BLT_3; //0x0CA

BYTE grStart_BLT_3; //0x0CB

WORD grX_Start_2; //0x0CC

WORD grY_Start_2; //0x0CE

WORD grX_End_2; //0x0D0

WORD grY_End_2; //0x0D2

BYTE grStop_BLT_2; //0x0D4

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-42 Copyright 1996 – Cirrus Logic Inc.

BYTE grStart_BLT_2; //0x0D5

BYTE grPADStop_BLT_2[0xDE-0xD6];

BYTE grStop_BLT_1; //0x0DE

BYTE grStart_BLT_1; //0x0DF

WORD grCursor_X; //0x0E0

WORD grCursor_Y; //0x0E2

WORD grCursor_Preset; //0x0E4

WORD grCursor_Control; //0x0E6

WORD grCursor_Location; //0x0E8

WORD grDisplay_Threshold_and_Tiling;//0x0EA

BYTE grPADDisplay_Thr[F0h-ECh];

WORD grTest; //0x0F0

WORD grTest_HT; //0x0F2

WORD grTest_VT; //0x0F4

BYTE grPADTest_VT[0x100-0x00F6];

// V-PORT Registers

WORD grX_Start_Odd; //0x100

WORD grX_Start_Even; //0x102

WORD grY_Start_Odd; //0x104

WORD grY_Start_Even; //0x106

WORD grVport_Width; //0x108

BYTE grVport_Height; //0x10A

BYTE grPADVport_Height;

WORD grVport_Mode; //0x10C

BYTE grVportpad[0x180-0x10E];

// LPB Registers

BYTE grLPB_Data[0x1F8-0x180];//0x180

BYTE grPADLPB[0x1FC-0x1F8];

WORD grLPB_Config; //0x1FC

WORD grLPB_Status; //0x1FE

// Rambus Registers

// Rambus Registers for BIOS Simulation

WORD grRIF_CONTROL; //0x200

WORD grRAC_CONTROL; //0x202

WORD grRAMBUS_TRANS; //0x204

BYTE grPADRAMBUS_TRANS[0x204-0x206];

REG32 grRAMBUS_DATA; //0x240

BYTE grPADRAMBUS_DATA[0x280-0x244];

// Serial Bus Registers

WORD grSerial_Bus; //0x0280

BYTE grPADSerial_Bus[0x300-0x282];

// PCI Configuration Registers

Copyright 1996 – Cirrus Logic Inc. 2-43 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

WORD grVendor_ID; //0x0300

WORD grDevice_ID; //0x0302

WORD grCommand; //0x0304

WORD grStatus; //0x0306

BYTE grRevision_ID; //0x0308

BYTE grClass_Code; //0x0309

BYTE grPADClass_Code[0x30E-0x30A];

BYTE grHeader_Type; //0x030E

BYTE grPADHeader_Type[0x310-0x30F];

REG32 grBase_Address_0; //0x0310

REG32 grBase_Address_1; //0x0314

BYTE grPADBase_Address_1[0x32C-0x318];

WORD grSubsystem_Vendor_ID; //0x032C

WORD grSubsystem_ID; //0x032E

REG32 grExpansion_ROM_Base; //0x0330

BYTE grPADExpansion_ROM_Base[0x33C-0x334];

BYTE grInterrupt_Line; //0x033C

BYTE grInterrupt_Pin; //0x033D

BYTE grPADInterrupt_Pin[0x3F8-0x33E];

REG32 grVGA_Shadow; //0x03F8

REG32 grVS_Control; //0x03FC

// Graphics Accelerator Registers

// 2D Engine Control Registers

WORD grSTATUS; //0x400

WORD grCONTROL; //0x402

BYTE grQFREE; //0x404

BYTE grOFFSET_2D; //0x405

BYTE grTIMEOUT; //0x406

BYTE grTILE_CTRL; //0x407

REG32 grRESIZE_A_opRDRAM; //408

REG32 grRESIZE_B_opRDRAM; //40C

REG32 grRESIZE_C_opRDRAM; //410

BYTE pad2[0x480-0x414];

REG32 grCOMMAND; //480

BYTE pad3[0x500-0x484];

WORD grMIN_Y; //500

WORD grMAJ_Y; //502

WORD grACCUM_Y; //504

BYTE pad3A[0x508-0x506];

WORD grMIN_X; //508

WORD grMAJ_X; //50A

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-44 Copyright 1996 – Cirrus Logic Inc.

WORD grACCUM_X; //50C

REG16 grLNCNTL; //50E

WORD grSTRETCH_CNTL; //510

WORD grCHROMA_CNTL; //512

BYTE pad3B[0x520-0x514];

REG32 grOP0_opRDRAM; //520

REG32 grOP0_opMRDRAM; //524

WORD grOP0_opSRAM; //528

REG16 grPATOFF; //52A

BYTE pad4[0x540-0x52C];

REG32 grOP1_opRDRAM; //540

REG32 grOP1_opMRDRAM; //544

WORD grOP1_opSRAM; //548

WORD grOP1_opMSRAM; //54A

BYTE pad5[0x560-0x54C];

REG32 grOP2_opRDRAM; //560

REG32 grOP2_opMRDRAM; //564

WORD grOP2_opSRAM; //568

WORD grOP2_opMSRAM; //56A

BYTE pad6[0x580-0x56C];

WORD grSRCX; //580

REG16 grSHRINKINC; //582

REG32 grDRAWBLTDEF; //584

// WORD grDRAWDEF; //584

#define grDRAWDEF grDRAWBLTDEF.LH.LO

// WORD grBLTDEF; //586

#define grBLTDEF grDRAWBLTDEF.LH.HI

REG16 grMONOQW; //588

BYTE pad7[0x5e0-0x58A];

REG32 grOP_opFGCOLOR; //5E0

REG32 grOP_opBGCOLOR; //5E4

REG32 grBITMASK; //5E8

WORD grPTAG; //5EC

BYTE pad8[0x5F0 - 0x5EE];

REG32 grCHROMA_LOWER; /* 5F0 */

REG32 grCHROMA_UPPER; /* 5F4 */

BYTE pad8a [0x600 - 0x5F8];

REG32 grBLTEXT_XEX; //600

REG32 grBLTEXTFF_XEX; //604

REG32 grBLTEXTR_XEX; //608

WORD grBLTEXT_LN_EX; //60C

BYTE pad9[0x620-0x60E];

Copyright 1996 – Cirrus Logic Inc. 2-45 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

REG32 grMBLTEXT_XEX; //620

BYTE pad9a[0x628-0x624];

REG32 grMBLTEXTR_XEX; //628

BYTE pad9b[0x700-0x62C];

REG32 grBLTEXT_EX; //700

REG32 grBLTEXTFF_EX; //704

REG32 grBLTEXTR_EX; //708

BYTE pad10[0x720-0x70C];

REG32 grMBLTEXT_EX; //720

BYTE pad10a[0x728-0x724];

REG32 grMBLTEXTR_EX; //728

BYTE pad10b[0x800-0x72C];

//sim

DWORD grHOSTDATA[800h]; //800 -> fff

} Graphics_Accelerator_Registers_Type,
* pGraphics_Accelerator_Registers_Type, GAR;

// Status Register values

#define STATUS_FIFO_NOT_EMPTY 0x0001

#define STATUS_PIPE_BUSY 0x0002

#define STATUS_DATA_AVAIL 0x8000

#define STATUS_IDLE (STATUS_PIPE_BUSY | STATUS_FIFO_NOT_EMPTY)

// Control register values

#define WFIFO_SIZE_32 0x0100

#define HOST_DATA_AUTO 0x0200

#define SWIZ_CNTL 0x0400

// bits 12:11 define tile size

#define TILE_SIZE_128 0x0000

#define TILE_SIZE_256 0x0800

#define TILE_SIZE_2048 0x1800

// bits 14:13 define bits per pixel for graphics modes

#define CNTL_8_BPP 0x0000

#define CNTL_16_BPP 0x2000

#define CNTL_24_BPP 0x4000

#define CNTL_32_BPP 0x6000

// Tile_ctrl register

// bits 7:6 interleave memory

#define ILM_1_WAY 0x00

#define ILM_2_WAY 0x40

#define ILM_4_WAY 0x80

// bits 5:0 define BYTE pitch of display memory in conjunction with

// TILE_SIZE

// from Control register

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-46 Copyright 1996 – Cirrus Logic Inc.

/*

* DRAWDEF contents

*/

#define DD_ROP 0x0000

#define DD_TRANS 0x0100 /* transparent */

#define DD_TRANSOP 0x0200

#define DD_PTAG 0x0400

#define DD_SAT_2 0x4000

#define DD_SAT_1 0x8000

// LN_CNTL fields

#define LN_XINTP_EN 0x0001

#define LN_YINTP_EN 0x0002

#define LN_XSHRINK 0x0004

#define LN_YSHRINK 0x0008

//These are the auto BLT control bits

#define LN_RESIZE 0x0100

#define LN_CHAIN_EN 0x0200

// These are the yuv411 output average control bits

#define LN_LOWPASS 0x1000

#define LN_UVHOLD 0x2000

//This extracts the data format field from LNCNTL

#define LN_FORMAT 0x00F0

#define LN_YUV_SHIFT 0x4

#define LN_8BIT 0x0000

#define LN_RGB555 0x0001

#define LN_RGB565 0x0002

#define LN_YUV422 0x0003

#define LN_24ARGB 0x0004

#define LN_24PACK 0x0005

#define LN_YUV411 0x0006

// 7 - 15 are reserved

/*

* pmBLTDEF contents

*/

#define BD_OP2 0x0001 /* start of OP2 field

3:0 */

#define BD_OP1 0x0010 /* start of OP1 field

7:4 */

#define BD_OP0 0x0100 /* start of OP0 field

8:8 */

#define BD_TRACK_X 0x0200 /* Track OP ptrs in X

9:9 (when implemented) */

Copyright 1996 – Cirrus Logic Inc. 2-47 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

#define BD_TRACK_Y 0x0400 /* Track OP ptrs in Y

10:10(when implemented) */

#define BD_SAME 0x0800 /* common operand field

11:11 */

#define BD_RES 0x1000 /* start of RES field

14:12 */

#define BD_YDIR 0x8000 /* y direction bit 15:

*/

/* STRETCH_CNTL fields CL-GD546X / (Laguna 1+) */

#define STR_XINTP_EN 0x0001

#define STR_YINTP_EN 0x0002

#define STR_XSHRINK 0x0004

#define STR_YSHRINK 0x0008

/* These are the autoblt control bits -- REVB chips (using stretch ctrl)*/

#define STR_RESIZE 0x0040

#define STR_CHAIN_EN 0x0080

/* These are the yuv411 output average control bits */

#define STR_LOWPASS 0x0010

#define STR_UVHOLD 0x0020

/* This extracts the data format field from STRETCH_CTRL */

#define STR_SRC_FORMAT 0xF000

#define STR_SRC_SHIFT 12

#define STR_DEST_FORMAT 0x0F00

#define STR_DEST_SHIFT 8

#define STR_8BIT 0x0

#define STR_RGB555 0x1

#define STR_RGB565 0x2

#define STR_RGB888 0x3

#define STR_RGBA888 0x4

#define STR_YUV411 0x8

#define STR_YUV422 0x9

#define STR_YUV444 0xA

#define STR_YUVA444 0xB

#define STR_YUV10 0xC

#define STR_YUV12 0xD

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-48 Copyright 1996 – Cirrus Logic Inc.

/* These are for the CHROMA_CNTL register */

#define CHROMA_ENABLE 0x8000

#define CHROMA_YUV_CV 0x4000

#define CHROMA_TAG_EN 0x1000

#define CHROMA_SEC_SL1 0x0800

#define CHROMA_SEC_SL0 0x0400

#define CHROMA_RGB_OA 0x0200

#define CHROMA_SEC_OA 0x0100

#define CHROMA_SEC_EN 0x0080

#define CHROMA_R_EN 0x0040

#define CHROMA_G_EN 0x0020

#define CHROMA_B_EN 0x0010

#define CHROMA_SEC_IO 0x0008

#define CHROMA_R_IO 0x0004

#define CHROMA_G_IO 0x0002

#define CHROMA_B_IO 0x0001

/*

* Field values for BD_OP? and BD_res.

* LL(grBLTDEF, (BD_OP1 * IS_HOST_MONO) +

* (BD_OP2 * (IS_rdram + IS_PATTERN)) +

* (BD_RES * IS_RDRAM));

*/

#define IS_SRAM 0x0000

#define IS_RDRAM 0x0001

#define IS_HOST 0x0002

#define IS_SOLID 0x0007

#define IS_SRAM_MONO 0x0004

#define IS_RDRAM_MONO 0x0005

#define IS_HOST_MONO 0x0006

#define IS_PATTERN 0x0008

#define IS_MONO 0x0004

// these are for BD_RES only

#define IS_SRAM0 0x0004

#define IS_SRAM1 0x0005

#define IS_SRAM2 0x0006

#define IS_SRAM12 0x0007

// these are for BD_SAME

#define NONE 0x0000

Copyright 1996 – Cirrus Logic Inc. 2-49 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

typedef struct autoblt_regs {

REG16 STRETCH_CNTL;

REG16 SHRINKINC;

REG32 DRAWBLTDEF;

REG32 FGCOLOR;

REG32 BGCOLOR;

REG32 OP0_opRDRAM;

WORD MAJ_Y;

WORD MIN_Y;

REG32 OP1_opRDRAM;

WORD ACCUM_Y;

REG16 PATOFF;

REG32 OP2_opRDRAM;

WORD MAJ_X;

WORD MIN_X;

REG32 BLTEXT;

WORD ACCUM_X;

WORD OP0_opSRAM;

WORD SRCX;

WORD OP2_opSRAM;

REG32 NEXT_HEAD; // XY address of next in

REG32 CHROMA_LOWER; // chain if LNCTL chain

REG32 CHROMA_UPPER; // set

WORD CHROMA_CNTL;

WORD reserved [3];

} autoblt_regs, *autoblt_ptr;

#endif // _LGREGS_

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-50 Copyright 1996 – Cirrus Logic Inc.

2.6 2D Graphics Engine Initialization

This section discusses initialization of the CL-GD546X 2D Graphics Engine registers. It is for dis-
play-driver developers working on the adapter initialization code. The following documentation dis-
tinguishes between display mode initialization code (mode-switch code) and 2D engine
initialization code.

The mode-switch code is typically implemented in the BIOS. This code handles the details of set-
ting up the display mode.

The display initializes and manages 2D Engine registers. Some of these registers are set once by
the programmer and never need to be set again. Others may need short-term changes from the
‘normal’ setting for specific operations.

The display-driver programmer must consider initializing the following registers: BITMASK, CON-
TROL, LINECTL, OFFSET_2D, TAG_MASK, and TIMEOUT.

BITMASK Register

The 2D engine initialization code manages the BITMASK register. This register is typically not
modified by the mode-switch code. The BITMASK register is set to all ones, allowing writes to all
bits of each dword. For certain specialized graphics operations, this value can be overridden. Be
sure to re-enable all bits.

CONTROL Register

In the CONTROL register, the bpp and TILE_SIZE fields are set by the mode-switch code, and not
the AUTO_BLT_EN and SWIZ_CNTL fields. The SWIZ_CNTL field is typically set to ‘0’, and only
set to ‘1’ for operations that specifically require the swizzling of host data. Whether or not the pro-
grammer enables auto-BitBLTs by default is a design decision. Typically, auto-BitBLTs are
enabled. Graphics operations that use SRAM for intermediate storage should disable auto-Bit-
BLTs to prevent the contents of the SRAMs from being destroyed by auto-BitBLTs.

LINECTL Register

Most LINECTL register fields are set by the graphics operations that use them. Only the Graphics
Pixel Format field is set by the mode-switch code to match the value in CONTROL.BPP. This field
is normally set to match CONTROL.BPP for the benefit of stretch BitBLTs.

OFFSET_2D Register

The OFFSET_2D register typically does not have to be set, since most applications put the 2D
frame buffer at ‘0,0’. However, the programmer should initialize and control this register appropri-
ately for applications that require a non-zero start for the 2D frame buffer (for example, for double-
buffered graphics).

TAG_MASK Register

In the TAG_MASK register, the PTMASK field is set to ‘1’ when using 9-bit RDRAMS. The pro-
grammer can use the PTAG field in the DRAWDEF register to tag video data in the frame buffer.

Copyright 1996 – Cirrus Logic Inc. 2-51 September 1996

CL-GD546X Software Technical Reference Manual 2D PROGRAMMER’S GUIDE

TIMEOUT Register

The TIMEOUT register controls the behavior of the 2D engine during long transactions from the
host interface. This is caused by trying to write to the command FIFO when there is no room. If
the transaction times out, the data in the transfer is dropped and the bus is released. This causes
erratic behavior in the display driver, but is more acceptable than locking up the bus. To circumvent
the above problem, set the time-out delay to a large value and enable time-outs. In particular, set
TIMEOUT.TIMEOUT to ‘1111’, TIMEOUT.TIMEOUT_EN to ‘1’ and TIMEOUT.TIMEOUT_X16 to
‘1’. This should only be required during driver development as a debug aid. Production drivers
should have TIMEOUT disabled.

2D PROGRAMMER’S GUIDE CL-GD546X Software Technical Reference Manual

September 1996 2-52 Copyright 1996 – Cirrus Logic Inc.

	Table of Contents
	1. Overview
	2. 2D PROGRAMMER’S GUIDE
	2.1 2D Graphics Engine
	2.1.1 2D Frame Buffer
	2.1.2 Bit Swizzle
	2.1.3 Patterns
	2.1.4 Monochrome-to-Color Expansion
	2.1.5 Transparency

	2.2 2D Graphics BitBLT Operations
	2.2.1 Commonly Used BitBLT Control Registers
	2.2.2 BitBLT Programming Overview
	2.2.3 Monochrome-to-Color Conversion BitBLTs
	2.2.4 Transparent BitBLTs
	2.2.5 Pattern BitBLTs
	2.2.6 Host BitBLTs
	2.2.7 Byte BitBLTs (MBitBLTs)

	2.3 Tips and Tricks
	2.4 BitBLT Programming Examples
	Reading the Programming Examples
	2.4.1 Software Cursor Programming Example
	2.4.2 Font Load Programming Example
	2.4.3 Text BitBLT, Foreground/Background Color Pro...
	2.4.4 Text BitBLT, Monochrome Font from Host Progr...
	2.4.5 Text BitBLT, Transparent Background Programm...
	2.4.6 Simple Source Copy Programming Example
	2.4.7 Copy Frame Buffer-to-Host Programming Exampl...
	2.4.8 Color-Pattern BitBLT Programming Example
	2.4.9 Monochrome-to-Color BitBLT Programming Examp...
	2.4.10 Solid-Color-Fill Programming Example
	2.4.11 Copy Host to SRAM to Frame Buffer Programmi...
	2.4.12 Transparent-Monochrome-Cursor Programming E...
	2.4.13 Color-Transparency BitBLTs Programming Exam...
	2.4.14 Monochrome-Pattern-Transparency Mask Progra...
	2.4.15 Byte BitBLT Using MBitBLT and BitBLT for Co...
	2.4.16 Byte BitBLT Using MBitBLT to Off-Screen Cac...

	2.5 Register Header Files
	2.5.1 Header File — lgtypes.h
	2.5.2 Header File — lgregs.h

	2.6 2D Graphics Engine Initialization
	BITMASK Register
	CONTROL Register
	LINECTL Register
	OFFSET_2D Register
	TAG_MASK Register
	TIMEOUT Register

	3. 3D Programmer's Guide
	4. Video Programming
	5. System Operation
	6. BIOS Specification
	Index
	Sales Offices/Company Information
	Reader Response Card

